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Abstract

Clifford Algebras generalise complex variables algebraically and analytically. In particular,
this includes a generalisation of the notion of holomorphy and Cauchy’s Integral Theorem.
We give a brief overview of the general theory, before proving the classical Cauchy’s Integral
Theorem via differential forms and Stokes’ Theorem, to give a Clifford approach to complex
variables that lends itself to generalisation.

1 An overview of Clifford Analysis

We let F be R or C. We construct the Clifford Algebra over F as follows. Let {e0, e1, . . . , en} be
the standard basis for R × Rn. We define multiplication of these basis elements in the following
way:

e0 = 1

e2
j = −e0 1 ≤ j ≤ n

eiej = −ejei 1 ≤ i < j ≤ n

Whenever 1 ≤ j1 < j2 < · · · < jk ≤ n, write S = {j1, j2, . . . , jk} and define eS = ej1ej2 . . . ejk . For
S = ∅, define e∅ = e0. The Clifford algebra F(n) is defined as

F(n) = F- span {eS : S ⊂ {1, . . . , n}}

which makes it a 2n-dimensional algebra. If u, v ∈ F(n), then u =
∑

S uSeS and v =
∑

R uReR
with uS , vR ∈ F and uv =

∑
S,R uSvReSeR. The term u0 is the scalar part of u.

We equip the algebra with an involution. The Clifford conjugate for a basis element eS is the
element eS satisfying eSeS = 1 = e0 = eSeS . Observe then that eS = ±eS , with the sign chosen
appropriately. Then, the Clifford conjugate of a general u ∈ F(n) is defined as u =

∑
S uSeS . A

calculation reveals that uv = v u. Also, note that uv =
∑

S uSvS +
∑

S 6=R uSvReSeR. From this
observation we define an inner product 〈u, v〉 = (uv)0 =

∑
S uSvS . We write |· | = |· |2 for the

associated norm.

We can embed Rn+1 in F(n) by identifying it with the subspace R- span {e0, . . . , en} via the map
(x0, . . . , xn) 7→

∑n
j=0 xjej . Then, whenever m ≤ n, we can consider Rm ⊂ Rn+1 by identifying Rm

with the subspace span {e1, . . . , em} and so via transitivity, we can embed Rm in F(n).
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Not every element of F(n) is invertible [MP87]. However, if x ∈ Rn+1, then it does have an inverse.
An easy calculation shows that ej = −ej whenever 1 ≤ j ≤ n. Given an element x ∈ Rn+1 the
conjugate x = x0 −

∑n
j=1 xjej . The Kelvin inverse of x is then given by

x−1 =
x

|x|2
=
x0 −

∑n
j=1 xjej∑n

j=0 x
2
j

.

We highlight and important fact. The Clifford algebra R(1) can be identified with the Complex
numbers. This can be seen by identifying e0 7→ 1 and ı 7→ e1. We emphasise that this is an algebra
isomorphism over R. It is straightforward to check that the Clifford conjugate agrees with the
classical complex conjugate. Furthermore, every element in R(1) is invertible, because in the case
n = 1, there is a vector space isomorphism R(1)

∼=R R2. We also note that the algebra R(2) can be
identified with the Quaternions.

A Banach module over F(n) is a Banach space X over F with an operation of multiplication by
elements of F(n) with a κ ≥ 1 such that

‖xu‖ ≤ κ|u|‖x‖ and ‖ux‖ ≤ κ|u|‖x‖

for all x ∈ X and u ∈ F(n). In some sense, a Banach module is a generalisation of the concept of
a space over a field, since in the module we are able to multiply by elements of F(n).

Suppose X and Y are Banach modules over F(n). We say that A : X → Y is a right module
homomorphism if (Ax)u = A(xu) for all x ∈ X and u ∈ F(n). Certainly, we also have a notion
of left module homomorphism. Namely, it is a map B : X → Y satisfying (ux)B = u(xB). That
this situation arises can be seen by considering the operator A =

∑n
j=0Ajej , with Aj ∈ L (X ,Y).

Then, in general, we do not expect xA = Ax. The space of continuous right homomorphisms is
denoted L(n)(X ,Y) and it is considered as a Banach space with the uniform operator topology.

Let X(n) = X ⊗ F(n). Every ξ ∈ X(n) arises in the form ξ =
∑

S xS ⊗ eS , where xS ∈ X .
For convenience, we omit the ⊗ and simply write ξ =

∑
S xSeS . Multiplication by u ∈ F(n) is

defined by ξu =
∑

S,R uRxSeSeR and uξ =
∑

S,R uRxSeReS . We equip ξ ∈ X(n) with the norm

‖ξ‖ = (
∑

S ‖xS‖2)
1
2 . It follows then that X(n) is a Banach module with κ = 1. We highlight a trivial

fact. Since F is a Banach space over F, the module F⊗F(n)
∼= F(n) is in fact a Banach module over

F(n). This observation shows our choice of notation for a Clifford algebra is consistent with that
of a Banach module. Furthermore, the space (L (X ,Y))(n) can be identified with L(n)(X(n),Y(n))
[Jef04, §3.2].

Now we can begin to consider some analytic properties of Clifford valued functions. Our approach
is taken from [MP87] and [Jef04]. A more measure theoretic approach can be found in [Mit94,
§1.2].

Given Ω ⊂ Rn+1 an open set, any function f : Ω→ F(n) can be written as f =
∑

S fSeS . Often, we
regard f as a function f : Ω ⊂ F(n) → F(n) via the canonical embedding. We say f ∈ C∞(Ω,F(n))
if fS ∈ C∞(Ω) for every S. For such a function, letting ∂j denote the partial derivative in the
direction j, we define

D = ∂0e0 +
n∑
j=1

∂jej .

Then, Df =
∑

S(∂0fSeS +
∑n

j=1 ∂jfSejeS) and fD =
∑

S(∂0fSeS +
∑n

j=1 ∂jfSeSej). Such a
function is said to be left monogenic if Df = 0 and right monogenic if fD = 0 on Ω. In the case
of R(1)

∼=R C, we find that Df = fD and Df = 0 are exactly the holomorphic functions. The
notion of monogenic generalises holomorphy.
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Let (Σ,M , µ) be a measure space. Then, the integral of a µ-measurable function f over a set Ω is
given by ∫

Ω
f dµ =

∑
S

(
∫

Ω
fS dµ)eS .

With this in mind, we have the following result as a first step towards a generalisation of Cauchy’s
Integral Theorem [FB82, §8.8].

Theorem 1.1 (Existence and uniqueness of fundamental solution). There exists a unique left and
right fundamental solution E ∈ L1

loc(Rn+1,F(n)) in the sense of distributions S (Rn+1)(n) to the
equation DE = ED = δ0e0. When x 6= 0, the fundamental solution is given by

E(x) =
1

ωn+1

x

|x|n+1

where 1
ωn+1

= 1
2π
−n+1

2 Γ(n+1
2 ), the area of the unit sphere Sn. Furthermore, E is both left and right

monogenic on Rn+1 \ {0}.

A detailed treatment of distributions taking values in Banach modules is found in [FB82, §2].
From the fundamental solution, we can construct a generalised Cauchy kernel. Analogous to the
case of complex variables, we write the Cauchy kernel as Gx(ω) = E(ω − x) for all ω 6= x and the
following theorem shows that it is indeed a generalisation of the classical Cauchy kernel.

Theorem 1.2 (Monogenic Cauchy’s integral theorem). Suppose that Ω ⊂ Rn+1 ⊂ F(n) is a bounded
open set with a smooth boundary ∂Ω, and ν : Rn+1 ⊂ F(n) → Rn+1 ⊂ F(n) is the unit outer normal
to ∂Ω. Furthermore, let µ denote the surface measure on ∂Ω. Suppose f, g : Ω′ → F(n) where
Ω ⊂ Ω′ and Ω′ are open sets. If f is left monogenic, and g is right monogenic. Then the following
hold:

1.
∫
∂ΩGx(ω)ν(ω)f(ω) dµ(ω) = f(x) when x ∈ Ω and 0 otherwise,

2.
∫
∂Ω g(ω)ν(ω)Gx(ω) dµ(ω) = g(x) when x ∈ Ω and 0 otherwise,

3.
∫
∂Ω g(ω)ν(ω)f(ω) dµ(ω) = 0.

2 The case of R(1)

We now focus our attention on R(1) and prove Theorem 1.2 for when n = 1 using differential forms
to be adequately general. For classical reasons, the directions e0 and e1 are respectively associated
with the variables x and y. Then,

D = ∂xe0 + ∂ye1.

We emphasise that we always regard R2 ↪→ R(1).

We firstly show that we have a product rule for D.

Proposition 2.1. Let Ω ⊂ R2 be an open set and let f, g : Ω → R(1) be differentiable. Then
D(fg) = (Df)g + f(Dg).

Proof. Firstly, we write f = f0e0 + f1e1 and g = g0e0 + f1e1. Then,

Df = (∂xe0 + ∂ye1)(f0e0 + f1e1) = (∂xf0 − ∂yf1)e0 + (∂xf1 + ∂yf0)e1
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and
fg = (f0g0 − f1g1)e0 + (f1g0 + f0g1)e1.

We compute D(fg):

D(fg) = [∂x(f0g0 − f1g1)− ∂y(f1g0 + f0g1)]e0 + [∂x(f1g0 + f0g1) + ∂y(f0g0 − f1g1)]e1

= [∂xf0g0 + f0∂xg0 − ∂xf1g1 − f1∂xg1 − ∂yf1g0 − f1∂yg0 − ∂yf0g1 − f0∂yg1]e0+
[∂xf1g0 + f1∂xg0 + ∂xf0g1 + f0∂xg1 + ∂yf0g0 + f0∂yg0 − ∂yf1g1 − f1∂yg1]e1

Also,

(Df)g = [(∂xf0 − ∂yf1)g0 − (∂xf1 + ∂yf0)g1]e0 + [(∂xf1 + ∂yf0)g0 + (∂xf0 − ∂yf1)g1]e1

and by interchanging f and g,

(Dg)f = [(∂xg0 − ∂yg1)f0 − (∂xg1 + ∂yg0)f1]e0 + [(∂xg1 + ∂yg0)f0 + (∂xg0 − ∂yg1)f1]e1

It is then a simple but tedious task to compare the expressions to conclude D(fg) = (Df)g +
f(Dg).

As a consequence of Theorem 1.1, the Cauchy kernel Gp(ω) is simply a translation of of E and we
have the following Corollary.

Corollary 2.2. Let f = Gp and suppose g is left monogenic. Then, D(Gpg) = (DGp)g on Ω\{p}.

The following is a Stokes’ type theorem for the operator D.

Proposition 2.3. Let Ω,Ω′ ⊂ R2 be open sets such that Ω ⊂ Ω′ and Ω is bounded with smooth
boundary ∂Ω. Suppose also that ∂Ω is equipped with unit outer normal ν and surface measure µ.
Let f ∈ C1(Ω′,R(1)). Then, ∫

Ω
D(Gpf) dL =

∫
∂Ω
Gpνf dµ

for all p ∈ Ω.

Proof. First, let θ0 = (Gpf)0 = (Gp)0f0 − (Gp)1f1 and θ1 = (Gpf)1 = (Gp)0f1 + (Gp)1f0. It then
follows that D(Gpf) = (∂xθ0 − ∂yθ1)e0 + (∂xθ1 + ∂yθ0)e1 and therefore,∫

Ω
D(Gpf) dL =

[∫
Ω

(∂xθ0 − ∂yθ1) dL
]
e0 +

[∫
Ω

(∂xθ1 + ∂yθ0) dL
]
e1.

Define ξ1, ξ2 ∈ ∧n−1(∂Ω) by ξ1 = θ1 dx + θ0 dy and ξ2 = −θ0 dx + θ1 dy. Therefore, dξ1 =
(∂xθ0−∂yθ1) dx∧dy and dξ2 = (∂xθ1 +∂yθ0) dx∧dy. By the definition of integration of an n-form
and by the application of Stokes’ Theorem,∫

Ω
(∂xθ0 − ∂yθ1) dL =

∫
Ω

(∂xθ0 − ∂yθ1) dx ∧ dy =
∫

Ω
dξ1 =

∫
∂Ω
ξ1 =

∫
∂Ω

(θ1dx+ θ0dy)

and by similar calculation ∫
Ω

(∂xθ1 + ∂yθ0) dL =
∫
∂Ω

(−θ0 dx+ θ1 dy)
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Let ν(p) = ν0(p)e0 + ν1(p)e1. Then the orthogonal projection of ν given by ν⊥(p) = −ν1(p)e0 +
ν0(p)e1 and ν⊥ ∈ Γ(T(∂Ω)). Letting dµ be the volume form on ∂Ω, dµ(ν⊥) = 1. Note that
{−ν1(p)e0, ν0(p)e1} form a basis for Tp(∂Ω) and it follows that dx = −ν1dµ and dy = ν0dµ. It
then follows that,∫

Ω
D(Gpf) dL =

[∫
∂Ω

(−θ1ν1 + θ0ν0) dµ
]
e0 +

[∫
∂Ω

(θ0ν1 + θ1ν0)dµ
]
e1

=
∫
∂Ω

(−θ1ν1 + θ0ν0)e0 + (θ0ν1 + θ1ν0)e1 dµ

=
∫
∂Ω

(−(Gp)0f1ν1 − (Gp)1f0ν1 + (Gp)0f0ν0 − (Gp)1f1ν0)e0

+ ((Gp)0f0ν1 − (Gp)1f1ν1 + (Gp)0f1ν0 + (Gp)1f0ν0)e1 dµ

and

Gpνf = [((Gp)0ν0 − (Gp)1ν1)f0 − ((Gp)1ν0 + (Gp)0ν1)f1]e0

+ [((Gp)1ν0 + (Gp)0ν1)f0 + ((Gp)0ν0 − (Gp)1ν1)f1]e1.

The conclusion then follows by comparing these two calculations and since we can interchange
between the surface measure and the surface (volume) form.

Combining these results, we can prove the following version of Cauchy’s integral theorem.

Theorem 2.4. Let Ω,Ω′ ⊂ R2 be open sets such that Ω ⊂ Ω′ and Ω is bounded with smooth
boundary ∂Ω. Suppose also that ∂Ω is equipped with unit outer normal ν and surface measure µ.
Let f : Ω′ → R(1) be left monogenic. Then,

f(p) =
∫
∂Ω
Gpνf dµ

for all p ∈ Ω.

Proof. Since Ω and Ω′ are open and Ω ⊂ Ω′ means that there exists an ε > 0 such that Ω + ε ⊂ Ω′.
Let Ω1 = Ω + 1

2ε and Ω2 = Ω + ε. Then, there exists a function f̃ ∈ S (R2)(1) such that f̃ = f on
Ω1 and f̃ = 0 on R2 \ Ω2.

Next, we observe that on Ω1, f̃ is left monogenic on Ω1 \ {p} we apply Corollary 2.2 combined
with the fact that f̃ ∈ S (R2)(1) and f = f̃ on Ω1,∫

Ω
D(Gpf) dL =

∫
Ω
D(Gpf̃) dL =

∫
Ω

(DGp)f̃ =
∫

Ω
f̃ dδp = f̃(p) = f(p)

Then by application of Proposition 2.3,

f(p) =
∫

Ω
D(Gpf) dL =

∫
∂Ω
Gpνf dµ

which concludes the proof of the theorem.

We remark that the key elements of the proof were Proposition 2.1 and 2.3. Indeed, if we were
able to generalise these two key results, the proof of the main theorem would be a proof for case
(1) of Theorem 1.2 without alteration.
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In the proof of Proposition 2.3, we took the smooth unit outer normal ν and then rotated it
counter-clockwise by π/2 to obtain the perpendicular ν⊥ ∈ Γ(T(∂Ω)). In this case, we only have a
single direction (up to orientation) to choose from. To extract out such a ν⊥ in a general setting,
we would need to proceed by projecting ν to the directions at each p. Such would be a basis for
Tp(∂Ω), and we would need to combine these in a way to obtain dµ(ν⊥) = 1.

Also, notice that the Clifford multiplication captures the rotation of ν to obtain the corresponding
tangential vector. Thus, we expect this should give us insight into how to construct the correct
differential form in the general case.

We have yet to show the relationship between monogeniety and holomorphy, and also between the
classical Cauchy Integral Theorem in Complex variables. Our discussion from this point onwards
will be specific to R(1).

Proposition 2.5. f is a left monogenic function if and only if f is right monogenic.

Proof. A simple calculation shows that Df = (∂xf0 − ∂yf1)e0 + (∂xf1 + ∂yf0)e1 = fD.

This justifies us calling a function monogenic rather than left/right monogenic. In light of this
observation, the integral in Theorem 2.4 also holds for the right monogenic case. This is actually
due to the fact that multiplication in R(1) is commutative. Had we used this fact, the proof of
Proposition 2.3 would have been simplified greatly. However, this would have been at the cost of
losing scope of the general perspective.

We have the following important observation which illustrates the fact that monogeniety is holo-
morphy in a different (but isomorphic) algebraic setting.

Proposition 2.6. A function f is monogenic if and only if f0 and f1 satisfy the Cauchy-Riemann
equations.

Proof. The proof of this is remarkably easy. Notice that 0 = Df = (∂xf0−∂yf1)e0+(∂xf1+∂yf0)e1

if and only if 0 = ∂xf0 − ∂yf1 and 0 = ∂xf1 + ∂yf0 which are exactly the Cauchy-Riemann
equations.

Now, let I : R(1)
∼=R C denote the usual algebra isomorphism which is given by I(e0) = 1 and

I(e1) = ı. In light of this notation, a function f is monogenic if and only if IfI−1 is holomorphic.

We require the following key change of coordinates formula for boundaries parametrised by smooth
curves. Note that Γ(T(∂Ω)) denotes sections over the bundle T(∂Ω).

Proposition 2.7. Let Ω,Ω′ ⊂ R2 be open sets such that Ω ⊂ Ω′ and suppose that ∂Ω is smooth
and that γ : [0, 1]→ ∂Ω is is a unit speed parametrisation of ∂Ω. As before, let ν be the unit outer
normal and µ the surface measure on ∂Ω. Then,∫

∂Ω
θν dµ = −e1

∫ 1

0
(θ ◦ γ) γ dt

for all θ ∈ C1(Ω′,R(1)).

Proof. First, we note that γ̇ = γ̇0e0 + γ̇1e1 ∈ Γ(T(∂Ω)) and |γ̇| = 1. The unit outer normal is then
the rotation of γ̇ by −π/2 and so it follows that ν ◦ γ = γ̇0e0 − γ̇1e1. With the observation that
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ν ◦ γ = −e1γ̇ and since γ is parametrised via arc length,∫
∂Ω
θν dµ =

∫ 1

0
(θ ◦ γ) (ν ◦ γ) dt =

∫ 1

0
(θ ◦ γ) (−e1γ̇) dt = −e1

∫ 1

0
(θ ◦ γ) γ̇ dt

which concludes the proof.

The following theorem then illustrates that Theorem 2.4 is really the classical Cauchy Integral
Theorem in another language.

Proposition 2.8. Let Ω,Ω′ ⊂ R2 be open sets such that Ω ⊂ Ω′ and suppose that ∂Ω is smooth
and that γ : [0, 1] → ∂Ω is is a unit speed parametrisation of ∂Ω. As before, let ν be the unit
outer normal and µ the surface measure on ∂Ω. Suppose f : Ω′ → R(1) is monogenic and let
f̃ : Ω′ ↪→ C→ C be given by f̃ = IfI−1. Then,

(f̃)(ξ) = I
∫
∂Ω
GI−1(ξ)fν dµ =

1
2πi

∫
γ̃

f̃(ζ)
ζ − ξ

dζ

where γ̃ = Iγ.

Proof. Fix ξ ∈ Ω, let p = I−1ξ and , let θ = Gpf = GI−1ξf . Also, by Theorem 1.1,

Gp(x) =
1

2π
x− p
|x− p|2

⇐⇒ IGI−1ξI−1(ζ) =
1

2π
1

ζ − ξ

and since multiplication in R(1) is commutative, we apply Proposition 2.7 to find:

I
∫
∂Ω
GI−1ξfν = −ı

∫ 1

0
I(GI−1f ◦ γ) Iγ̇ dt

=
1
ı

∫ 1

0
(IGI−1I−1)(Iγ)(IfI−1)(Iγ) dt

=
1
ı

∫ 1

0
(IGI−1I−1)(γ̃)f̃(γ̃) dt

=
1

2πı

∫
γ̃

f̃

ζ − ξ
dζ.
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