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Abstract

When X is a Banach space, the Riesz-Dunford functional calculus provides a mechanism
for defining f(T ) when T ∈ L (X ). We consider the situation when A = (A1, . . . , An) ∈∏n

i=1 L (X ). In particular, we do not assume that the operators Ai commute. We give a brief
survey of functional calculi over suitable classes of functions containing the polynomials. Ini-
tially, we consider the Symmetric operator calculus defined over the over the polynomials, before
examining the Weyl functional calculus over smooth functions when A satisfies an appropriate
growth condition. Finally we employ Clifford algebras as a means to obtain the Monogenic
functional calculus which is consistent with both the Weyl and Symmetric operator calculus.

1 Symmetric operator calculus

Let X be a Banach space and A = (A1, . . . , An) ∈
∏n
i=1 L (X ). At the heart of the Riesz-Dunford

functional calculus sits the polynomials which are the simplest functions for which a functional
calculus can be defined. In analogy, using simply the boundedness of Ai, we define a functional
calculus on the space of polynomials P(Rn).

Let α = (α1, . . . , αn) ∈ Zn+ be a multi-index with |α| =
∑n

i=1 αi and Pα(x1, . . . , xn) = xα1
1 · · ·xαnn .

It is not difficult to see that P(Rn) = span
{
Pα : α ∈ Zn+

}
.

The principal difficulty in forming a functional calculus is how the calculus should behave when Aj
are noncommuting. This is most easily seen in the simplest case when n = 1 and P (x1, x2) = x1x2.
Then, the choices we have for P (x1, x2) include A1A2, A2A1,

1
2(A1A2 +A2A1).

Let us first consider the commuting case, so assume that the Ai are commuting. Then, we have a
unique way of defining the functional calculus. Define:

Pα(A1, . . . , An) =
n∏
i=1

Aαi = Aα1
1 · · ·A

αn
n .

To consider the non-commuting case, we first consider decomposing a polynomial Pα in a sym-
metric sense. For a multi-index α ∈ Zn+, define

Sα =
{
π : {1, . . . , |α|} → {1, . . . , n} such that π−1({j}) = αj , j ∈ {1, . . . , n}

}
.

That is, every map π ∈ Sα attains the value j exactly αj times. In this terminology, a calculation
then shows that

Pα(x1, . . . , xn) =
α1! · · ·αn!
|α|!

∑
π∈Sα

xπ(1) . . . xπ(|α|).
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With this in mind, we relax the commuting condition on A. This leads to the following definition.

Definition 1.1 (Symmetric operator calculus). Define the Symmetric operator calculus:

Pα(A1, . . . , An) =
α1! · · ·αn!
|α|!

∑
π∈Sα

Aπ(1) · · ·Aπ(|α|).

It is also immediate that this generalises the case of commuting A. That is, for A commuting, the
following calculus agrees with the calculus we defined above for commuting operators.

As an example, let n = 2 and A = (A1, A2). Then,

Pα(A1, A2) =
2!1!
3!

(A2
1A2 +A1A2A1 +A2A

2
1) =

1
3

(A2
1A2 +A1A2A1 +A2A

2
1).

It is not hard to see that if A1, A2 commute, then Pα(A1, A2) = A2
1A2.

2 Weyl Functional Calculus

Let T ∈ L (X ). To define the Riesz-Dunford functional calculus, we use the Cauchy integral
formula

f(ζ) =
1

2πı

∮
γ
f(ξ)(ξ − ζ)−1 dξ.

as a prototype where we can consider ζ to be a 1-matrix so that (ξ − ζ)−1 is the resolvent of
ζ. In order to construct f(T ), we replace the resolvent of ζ with the resolvent of T given by
RT (ξ) = (ξI − T )−1.

Now, let A = (A1, . . . , An) ∈
∏n
i=1 L (X ). Let S (Rn) be the space of rapidly decreasing functions.

Whenever f ∈ S (Rn), we have the Fourier inversion formula [Yos95, p146, Defn 2]:

f(x) =
1

(2π)n

∫
Rn
eı〈ξ,x〉f̂(ξ) dξ

where f̂ represents the Fourier transform of f . This is the prototypical formula we use to define
the Weyl functional calculus. Formally, we substitute the variable x ∈ Rn by A ∈

∏
i=1 L (X ). A

few tools are required to make this rigorous. As in Fourier analysis, we will require some ideas from
distribution theory as we obtain the Weyl functional calculus as a Banach valued distribution.

Let Ω ⊂ Rn be an open set, f ∈ C∞(Ω) and K b Ω with m < ∞. Define ρK,m(f) =
sup|α|≤m,x∈K |Dαf(x)|, where α is a multi-index. Then, the space F (Ω) denotes C∞(Ω) as an
abstract set with the locally convex topology generated by {ρK,m}. This is, in fact, a metric space
[Yos95, p27, Prop 6]. In distribution theory, we are mainly concerned with Ω = Rn.

The locally convex topology on F (Rn) relates closely to the topology of its dual F (Rn)′. Therefore,
given T ∈ F (Rn)′, we define the support of T denoted by spt T as the smallest closed set C ⊂ Rn

such that for every f ∈ F (Rn) with spt f ⊂ Rn \C we have T (f) = 0 [Yos95, p62]. Then F (Rn)′

is the space of compactly supported distributions [Yos95, p64, Thm 2] and S (Rn)′ is the space of
tempered distributions. Also, F (Rn)′ ⊂ S (Rn)′ [Yos95, p149]. Similarly, for any Banach space B,
we write L (F (Rn),B) and L (S (Rn),B) respectively to be the space of Banach valued compactly
supported distributions and tempered distributions. The support of a Banach valued distribution
is defined in the same way. We are particularly interested in the case when B = L (X ).
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The classical Paley-Wiener theorem for functions gives a characterising condition for when a func-
tion is compactly supported in terms of a decay condition on its Fourier-Laplace transform. The
Paley-Wiener theorem for tempered distributions then gives a characterising condition to deter-
mine when a tempered distribution is compactly supported. That is, when a tempered distribution
satisfies the characterising condition, we are able to uniquely extend its domain from S (Rn) to
F (Rn). We give the statement of Paley-Wiener theorem for Banach valued distributions as in
[Jef04, Prop 2.1].

Theorem 2.1 (Banach valued Paley-Wiener). Let B be a Banach space and let T ∈ L (S (Rn),B))
be a tempered distribution. Then, the following statements are equivalent:

(i) There exists an r ≥ 0 such that spt T ⊂ Br(0).

(ii) There exists an f : Cn → B such that T̂ = f and there exist constants C ≥ 0, s ≥ 0 such that

‖f(ζ)‖B ≤ C(1 + |ζ|)ser|Im ζ|

for all ζ ∈ Cn.

Note here that Im ζ = (Im ζ1, . . . , Im ζn) and T̂ is actually the Fourier-Laplace transform [Yos95,
p161].

The idea is to define the functional calculus as a tempered distribution (so that we have a calculus
of Schwartz functions) and then apply Theorem 2.1 to get an extension to F (Rn). The following
growth estimate is essential.

Definition 2.2 (Paley-Wiener type (s, r) and type s). Let A = (A1, . . . , An) ∈
∏n
i=1 L (X ). We

say A is of Paley-Wiener type (s, r) if

‖e−ı〈ξ,A〉‖L(X ) ≤ C(1 + |ξ|)ser|Im ξ|

for all ξ ∈ Cn. We say that A is of Paley-Wiener type s when Im ξ = 0 or equivalently ξ ∈ Rn.

Here, 〈· , · 〉 : Cn ×
∏n
i=1 L (X ) → L (X ) is defined as 〈ξ, A〉 =

∑n
j=1 ξjAj whenever ξ ∈ Cn. We

define e−ı
Pn
j=1 ξjAj via the Riesz-Dunford functional calculus. Combining these two facts, we can

give meaning to the operator e−ı〈ξ,A〉 appearing in the definition.

There are important tuples of operators that are of Paley-Wiener type (s, r). Suppose that X = H
a Hilbert space and that each Aj is self adjoint. Then 〈ξ, A〉 is self adjoint for all ξ ∈ Rn. Setting
r = (

∑n
j=1 ‖Aj‖2)

1
2 , we find that

‖eı〈ξ,A〉‖ ≤ er|Im ξ|.

Note that this in particular implies that each Aj is of Paley-Wiener type (s, r). However, it is
not enough to assume that each Aj is of Paley-Wiener type (s, r) to conclude that A is also of
Paley-Wiener type (s′, r′) (for s′, r′ ≥ 0). This and other examples can be found in [Jef04, p18].

The lack of an order structure in a general Banach space means that we do not have the luxury of
a supremum to define a Banach valued integral. Fortunately, we can use sequences. Let (Σ,M , µ)
be a measure space. Then, we say that a function f : Σ → X is Bochner µ-integrable if there
exists a sequence sn : Σ → X , of µ-integrable simple functions such that sn → f µ-a.e. and∫

Σ ‖sn − sm‖ dµ→ 0 as m,n→∞. Then, we define the Bochner integral of f to be∫
Σ
f dµ = lim

n→∞

∫
Σ
sn dµ.
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The limit is independent of the sequence sn. A detailed treatment of the Bochner integral can be
found in [Yos95, V, §5].

We now have sufficient tools to develop the Weyl functional calculus. The main theorem of this
section is taken from [Jef04, p19]. Further properties of the Weyl functional calculus can be found
in [And69].

Theorem 2.3 (Weyl functional calculus). Let X be a Banach space and let A = (A1, . . . , An) ∈∏n
i=1 L (X ). Suppose there exists r, s ≥ 0 such that A is of Paley-Wiener type (s, r). Then there

exists a unique compactly supported distribution WA ∈ L (F (Rn),L (X )) which agrees with the
Symmetric operator calculus for polynomials. The distribution is given by

WA(f) =
1

(2π)n

∫
Rn
eı〈ξ,A〉f̂(ξ) dξ

for every f ∈ F (Rn). This integral converges as a Bochner integral in L (X ), and spt WA ⊂ Br(0).
Also, A is of Paley-Wiener type (s, sup |K|).

In particular, we can apply the Weyl functional calculus in the case that X = H a Hilbert space
and each operator Aj is self adjoint [Jef04, Ex 2.3].

We should expect a notion of spectrum for A. In fact, there are many ways to define the joint
spectrum of A. However, we use the following definition.

Definition 2.4 (Joint spectrum and radius). Define the joint spectrum γ(A) = spt WA. The joint
spectral radius is then r(A) = sup |γ(A)|.

This is indeed a sensible definition of the joint spectrum. Suppose that n = 1. Then, we find that
γ(A) = σ (A). Furthermore, we have a spectral mapping theorem, σ(WA(f)) = f(σ(A)).

We have that whenever T ∈ L (X ), the spectrum σ (T ) ⊂ B‖T‖. A generalisation of this result
when A is Paley-Wiener type s is captured more precisely in the following theorem [Jef04, Thm
2.7].

Theorem 2.5. Suppose A is of Paley-Wiener type s. Then A is of type (s, r) with r = (
∑n

j=1 ‖Aj‖2)
1
2 ,

and

γ(A) ⊂
n∏
j=1

[−‖Aj‖, ‖Aj‖] ⊂ Rn.

3 Clifford Analysis

To look beyond the Weyl functional calculus to one that resembles the Riesz-Dunford calculus, we
need a suitable algebra which generalises the Complex numbers, the notion of holomorphy, and
Cauchy’s integral theorem.

We let F be R or C. We construct a Clifford Algebra over F as follows. Let {e0, e1, . . . , en} be the
standard basis for R× Rn. We define multiplication of these basis elements in the following way:

e0 = 1

e2
j = −e0 1 ≤ j ≤ n

eiej = −ejei 1 ≤ i < j ≤ n
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Whenever 1 ≤ j1 < j2 < · · · < jk ≤ n, write S = {j1, j2, . . . , jk} and define eS = ej1ej2 . . . ejk . For
S = ∅, define e∅ = e0. The Clifford algebra F(n) is defined as

F(n) = F- span {eS : S ⊂ {1, . . . , n}}

which makes it a 2n-dimensional algebra. If u, v ∈ F(n), then u =
∑

S uSeS and v =
∑

R uReR
with uS , vR ∈ F and uv =

∑
S,R uSvReSeR. The term u0 is the scalar part of u.

We equip the algebra with an involution. The Clifford conjugate for a basis element eS is the
element eS satisfying eSeS = 1 = eSeS . Observe then that eS = ±eS , with the sign chosen
appropriately. Then, the Clifford conjugate of a general u ∈ F(n) is defined as u =

∑
S uSeS . A

calculation reveals that uv = v u. Also, note that uv =
∑

S uSvS +
∑

S 6=R uSvReSeR. From this
observation we define an inner product 〈u, v〉 = (uv)0 =

∑
S uSvS . We write |· | = |· |2 for the

associated norm.

We can embed Rn+1 in F(n) by identifying it with the subspace R- span {e0, . . . , en} via the map
(x0, . . . , xn) 7→

∑n
j=0 xjej . Then, whenever m ≤ n, we can consider Rm ⊂ Rn+1 by identifying Rm

with the subspace span {e1, . . . , em} and so via transitivity, we can embed Rm in F(n).

Not every element of F(n) is invertible [MP87]. However, if x ∈ Rn+1, then it does have an inverse.
An easy calculation shows that ej = −ej whenever 1 ≤ j ≤ n. Given an element x ∈ Rn+1 the
conjugate x = x0 −

∑n
j=1 xjej . The Kelvin inverse of x is then given by

x−1 =
x

|x|2
=
x0 −

∑n
j=1 xjej∑n

j=0 x
2
j

.

The Clifford algebra R(1) can be identified with the Complex numbers. This can be seen by
identifying 1 7→ 1 and ı 7→ e1. Similarly, the algebra R(2) can be identified with the Quaternions.

A Banach module over F(n) is a Banach space X over F with an operation of multiplication by
elements of F(n) with a κ ≥ 1 such that

‖xu‖ ≤ κ|u|‖x‖ and ‖ux‖ ≤ κ|u|‖x‖

for all x ∈ X and u ∈ F(n). In some sense, a Banach module is a generalisation of the concept of
a space over a field, since in the module we are able to multiply by elements of F(n).

Suppose X and Y are Banach modules over F(n). We say that A : X → Y is a right module
homomorphism if (Ax)u = A(xu) for all x ∈ X and u ∈ F(n). Certainly, we also have a notion of
left module homomorphisms. Namely, it is a map B : X → Y satisfying (ux)B = u(xB). That
this situation arises can be seen by considering the operator A =

∑n
j=0Ajej , with Aj ∈ L (X ,Y).

Then, in general, we do not expect xA = Ax. The space of continuous right homomorphisms is
denoted L(n)(X ,Y) and it is considered as a Banach space with the uniform operator topology.

Let X(n) = X ⊗ F(n). Every ξ ∈ X(n) arises in the form ξ =
∑

S xS ⊗ eS , where xS ∈ X .
For convenience, we omit the ⊗ and simply write ξ =

∑
S xSeS . Multiplication by u ∈ F(n) is

defined by ξu =
∑

S,R uRxSeSeR and uξ =
∑

S,R uRxSeReS . We equip ξ ∈ X(n) with the norm

‖ξ‖ = (
∑

S ‖xS‖2)
1
2 . It follows then that X(n) is a Banach module with κ = 1. We highlight a trivial

fact. Since F is a Banach space over F, the module F⊗F(n)
∼= F(n) is in fact a Banach module over

F(n). This observation shows our choice of notation for a Clifford algebra is consistent with that
of a Banach module. Furthermore, the space (L (X ,Y))(n) can be identified with L(n)(X(n),Y(n))
[Jef04, §3.2].
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Now we can begin to consider some analytic properties of Clifford valued functions. Our approach
is taken from [MP87] and [Jef04]. A more measure theoretic approach can be found in [Mit94,
§1.2].

Given Ω ⊂ Rn+1 an open set, any function f : Ω→ F(n) can be written as f =
∑

S fSeS . Often, we
regard f as a function f : Ω ⊂ F(n) → F(n) via the canonical embedding. We say f ∈ C∞(Ω,F(n))
if fS ∈ C∞(Ω) for every S. For such a function, letting ∂j denote the partial derivative in the
direction j, we define

D = ∂0e0 +
n∑
j=1

∂jej .

Then, Df =
∑

S(∂0fSeS +
∑n

j=1 ∂jfSejeS) and fD =
∑

S(∂0fSeS +
∑n

j=1 ∂jfSeSej). Such a
function is said to be left monogenic if Df = 0 and right monogenic if fD = 0 on Ω. In the case of
R(1)

∼= C, we find that Df = fD and Df = 0 are exactly the holomorphic functions. The notion
of monogenic generalises holomorphy.

In a first step towards a generalisation of Cauchy’s integral theorem, we have the following impor-
tant result [FB82, §8.8].

Theorem 3.1 (Existence and uniqueness of fundamental solution). There exists a unique left and
right fundamental solution E ∈ L1

loc(Rn+1,F(n)) in the sense of distributions S (Rn+1)(n) to the
equation DE = ED = δ0e0. When x 6= 0, the fundamental solution is given by

E(x) =
1

ωn+1

x

|x|n+1

where 1
ωn+1

= 1
2π
−n+1

2 Γ(n+1
2 ), the area of the unit sphere Sn. Furthermore, E is both left and right

monogenic on Rn+1 \ {0}.

A detailed treatment of distributions taking values in Banach modules is found in [FB82, §2].
From the fundamental solution, we can construct a generalised Cauchy kernel. Analogous to the
case of complex variables, we write the Cauchy kernel as Gx(ω) = E(ω − x) for all ω 6= x and the
following theorem shows that it is indeed a generalisation of the classical Cauchy kernel.

Theorem 3.2 (Monogenic Cauchy’s integral theorem). Suppose that Ω ⊂ Rn+1 ⊂ F(n) is a bounded
open set with a smooth boundary ∂Ω, and ν : Rn+1 ⊂ F(n) → Rn+1 ⊂ F(n) is the unit outer normal
to ∂Ω. Furthermore, let µ denote the surface measure on ∂Ω. Suppose f, g : Ω′ → F(n) where
Ω ⊂ Ω′ and Ω′ are open sets. If f is left monogenic, and g is right monogenic. Then the following
hold:

1.
∫
∂ΩGx(ω)ν(ω)f(ω) dµ(ω) = f(x) when x ∈ Ω and 0 otherwise,

2.
∫
∂Ω g(ω)ν(ω)Gx(ω) dµ(ω) = g(x) when x ∈ Ω and 0 otherwise,

3.
∫
∂Ω g(ω)ν(ω)f(ω) dµ(ω) = 0.

A proof of the left monogenic case involving Stokes’ theorem and differential forms can be found in
[FB82, §9]. The right monogenic case can be proved similarly. A slightly different proof for both
cases can be found in [Mit94, §1.2].

There are also analogues of the important classical theorems in complex analysis such as Liouville’s
theorem, and Morera’s theorem. Details can be found in [MP87] and [FB82, Ch.2].
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The best example for the theory is taken when n = 1. Identifying R(1) with C, we find that
D = ∂x + ı∂y, and the Cauchy kernel becomes Gx(ω) = 1

2π
ω−x
|ω−x|2 = 1

2π
1

ω−x . A straightforward
calculation then reveals that

∫
∂ΩGx(ω)ν(ω)f(ω) dµ(ω) = 1

ı

∫
γ Gx(z)f(z) dz, which is the classical

Cauchy integral theorem.

Monogeniety, like holomorphy, has a vector valued analogue. Let B be a Banach space. Consider
f : Ω ⊂ Rn+1 ⊂ F(n) → B(n). Recall that weak holomorphy is defined via the dual B′ = L (B,C)
[Yos95, Ch.5,§3]. For a notion of weak monogenic we can consider L(n)(B(n),F(n)) ∼= L (B,F)(n)

∼=
B′(n). Then, the notion of strong monogenic corresponds to limits in the original topology. As in
the holomorphic case, we have an equivalence of monogeniety in the weak and strong sense [Jef04,
Prop 3.2]. In particular, Theorem 3.2 holds in the vector valued case. These facts are still valid
if we replace the Banach space X with E , a locally convex linear space over F [Jef04, §3.4]. Then,
E(n) is then called a locally convex module. However, of particular importance is the case when X
is a Banach space and B = L (X ).

It will be useful to extend analytic functions on neighbourhoods of Rn to monogenic functions
on an appropriate neighbourhood of Rn+1. Without loss of generality (that is, by translation),
assume that Ω ⊂ Rn such that 0 ∈ Ω. Let f : Ω→ C be analytic. So, we have the following Taylor
expansion of f at 0:

f(x) =
∞∑
k=0

1
k!

n∑
l1=1

· · ·
n∑

lk=1

al1...ljxl1 · · ·xlj .

For the function πj : Rn → R given by πj(x) = xj , the monogenic extension is given by the
function zj : Rn+1 → F(n) defined by zj(x) = xje0 − x0ej . For each multi-index l1 . . . lk, define
V l1...lk : Rn+1 → F(n) by

V l1...lk(x) =
1
k!

∑
(j1,...,jk)∈σ(l1,...,lk)

zj1 · · · zjk

and σ(11, . . . , lk) represent distinguishable permutations of l1, . . . , lk. Also, V l1...lk : Rn+1 →
Rn+1 ⊂ F(n) [Jef04, §3.5]. Then, there exists a neighbourhood Ω′ ⊂ Rn+1 on which the following
series is convergent and we define:

f̃(x) =
∞∑
k=0

∑
(l1,...,lk)

al1...lkV
l1...lk(x).

The function f̃ is called the monogenic extension of f . It takes values in Rn+1 ⊂ F(n).

There are some natural function spaces associated with this machinery. Let Ω ⊂ Rn+1 be an open
set. Then the spaceMn(Ω) =M(Ω,F(n)) consists of left monogenic functions f : Ω→ F(n) and it is
equipped with the compact-open topology. For a closed C ⊂ Rn+1 the spaceMn(C) =M(C,F(n))
is defined as the strict inductive limit ofMn(Ω) such that C ⊂ Ω and Ω is open. More details can
be found in [Jef04, §3.8] and [FB82, Ch3].

4 Monogenic Functional Calculus

The key step in defining the Monogenic functional calculus is to define the operator valued Cauchy
kernel Gω(A). This can be done via an extended Weyl functional calculus and alternatively, via a
monogenic expansion. These two approaches are consistent. We proceed as in [Jef04, §4].
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Recall that the Weyl functional calculus defined in §2 is a compactly supported distribution and
so it acts on functions defined on all of Rn when A is of Paley-Wiener type (s, r). We first extend
WA to act on functions defined on arbitrary open sets containing the support of the distribution.
Let Ω ⊂ Rn be open such that spt WA ⊂ Ω and suppose f ∈ F (Ω). Let f̃ be any extension of f to
the whole of Rn. Then the extension WA(f) =WA(f̃) is a well defined map since any compactly
supported distribution vanishes outside its support [Yos95, Ch.1, §13].

Now, we extend WA to a map F (Ω)(n) → L (X )(n) by embedding Rn in Rn+1 where Ω ⊂ Rn+1 is
an open set and spt WA ⊂ Ω. So, identify Rn as the space

{
x ∈ Rn+1 : x0 = 0

}
. Then, spt WA ⊂

Ω ∩ Rn and Ω ∩ Rn is open in Rn. If f ∈ F (Ω)(n) then f =
∑

S fSeS and we define WA(f) =∑
SWA(fS |Ω∩Rn)eS . We have the following important observation for analytic f [Jef04, §4.1].

Theorem 4.1. Let f be an analytic function in an open set Ω in Rn such that spt WA ⊂ Ω, and
let f̃ : Ω̃→ F(n) be the monogenic extension. Then, WA(f̃) =WA(f)e0.

As a consequence, we can consider WA(f̃) ∈ L (X ) whenever f is analytic.

For, any ω ∈ Rn+1 \ spt WA, there exists an open set Ωω ⊂ Rn+1 such that spt WA ⊂ Ωω and ω 6∈
Ωω and Gω ∈ F (Ωω)(n). Assuming that A is of type Paley-Wiener s, we define Gω(A) =WA(Gω).
Then, by [Jef04, Cor 4.3], the map ω 7→ Gω(A) is both left and right monogenic on Rn+1 \ spt WA.
Since spt WA = γ(A), the set of singularities of ω → Gω(A) is exactly γ(A). Also, we can apply
the vector valued version of Theorem 3.2 to justify the following definition.

Definition 4.2 (Monogenic functional calculus for Paley-Winer type s operators). Let A be of
Paley-Wiener type s, and let Gω(A) = WA(Gω). Suppose Ω,Ω′ ⊂ Rn+1 be open sets such that
γ(A) ⊂ Ω ⊂ Ω′ with Ω bounded. Also, suppose ∂Ω is smooth with unit outer normal ν and surface
measure µ. If f : Ω→ F(n) is left monogenic and g : Ω→ F(n) is right monogenic define

f(A) =
∫
∂Ω
Gω(A)ν(ω)f(ω) dµ(ω) and g(A) =

∫
∂Ω
g(ω)ν(ω)Gω(A) dµ(ω)

We find that WA(f) = f(A) and WA(g) = g(A) [Jef04, Cor 4.5]. Therefore, for A that is of
Paley-Wiener s, we have only rephrased the Weyl functional calculus in another language.

We now abandon the Paley-Wiener type s condition on A. For suitably large ω, we define Gω(A)
in terms of a power series which is motivated by the n = 1 case where we have RAj (ζ) =∑∞

k=0A
i
jζ
−k−1 for |ζ| > ‖Aj‖. Let RA = (1 +

√
2)‖
∑n

j=1Ajej‖ and whenever ω ∈ Rn+1, let
al1...lk = (−1)k(∂l1 · · · ∂lkGω)(0). Also, define

V l1...lk(A) =
1
k!

∑
(j1,...,jk)∈σ(l1,...,lk)

Aj1 · · ·Ajk

and as before, σ(11, . . . , lk) represent distinguishable permutations of l1, . . . , lk. Then, for |ω| > RA,
we define the Cauchy kernel

Gω(A) =
∞∑
k=0

∑
(l1,...,lk)

al1...lkV
l1...lk(A)

since this series is absolutely convergent for |ω| > RA by [Jef04, Lem 4.7]. This definition is
consistent by the following theorem [Jef04, §4.2].

Theorem 4.3. Suppose A is of Paley-Wiener type s and |ω| > RA. Then Gω(A) =WA(Gω).
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Let ARA =
{
ω ∈ Rn+1 : |ω| > RA

}
. Now, again assume that A is arbitrary, and let Ω ⊂ Rn+1

be the largest open set which is the domain of a function ω 7→ G̃ω(A) : Ω → L (X )(n) such that
[ω 7→ Gω(A)] = [ω 7→ G̃ω(A)|ARA ]. That this is sensible is a consequence of the following theorem
[Jef04, Thm 4.8].

Theorem 4.4. If A is of Paley-Wiener type s, then spt WA = γ(A) = Rn+1 \ Ω.

However, it is not possible to use ω 7→ G̃ω(A) to define the monogenic functional calculus since
this extension may not be unique.

We introduce the crucial sufficient condition that we will assume from now on: suppose A satisfies
σ (〈A, ξ〉) ⊂ R for all ξ ∈ Rn. Then, there exists a monogenic extension ω 7→ G̃ω(A) : Ω→ L (X )(n)

of the function ω 7→ Gω(A) where Ω = (Rn+1 \ Rn) ∪ ARA [Jef04, Thm 4.12]. By taking a union
of all monogenic extensions with open domains Ω such that (Rn+1 \ Rn) ∪ ARA ⊂ Ω, we have the
following important theorem.

Theorem 4.5 (Existence of a unique maximal monogenic extension). Suppose A satisfies the
condition

σ (〈A, ξ〉) ⊂ R, for all ξ ∈ Rn.

Then, there exists a largest open set Ω such that (Rn+1 \Rn)∪ARA ⊂ Ω and and a unique left and
right maximal monogenic extension ω 7→ Gω(A) : Ω→ L (X )(n).

Then, the monogenic spectrum γ(A) is defined to be the complement of the domain of the maximal
monogenic extension. Since γ(A) ⊂ BRA , we have the following theorem analogous to the n = 1
case [Jef04, Thm 4.16].

Theorem 4.6. The monogenic spectrum γ(A) is a nonempty compact subset of Rn.

Suppose A satisfies σ (〈A, ξ〉) ⊂ R for all ξ ∈ Rn. Let Ω ⊂ Ω′ ⊂ Rn+1 be open sets such that
γ(A) ⊂ Ω, with Ω ⊂ Ω′ and Ω is bounded with smooth boundary ∂Ω equipped with a unit outer
normal ν and surface measure µ. If f : Ω′ → Rn+1 is left monogenic, then

f(A) =
∫
∂Ω
Gω(A)ν(ω)f(ω) dµ(ω).

As before, we can appeal to the vector valued version of Theorem 3.2 to find that integral exists
and so the definition makes sense. Indeed, for any f ∈Mn(γ(A)), there exists Ω,Ω′ as above and
this leads to the following definition.

Definition 4.7 (Monogenic functional calculus). The map f 7→ f(A) whenever f ∈Mn(γ(A)) is
called the monogenic functional calculus.

The Riesz-Dunford functional calculus is continous, is consistent with the polynomial functional
calculus, and maps the Cauchy kernel to resolvents. A corresponding statement for the monogenic
functional calculus is the following, which is a combination of [Jef04, Prop 4.19], [Jef04, Prop 4.20]
and [Jef04, Thm 4.22].

Theorem 4.8. Suppose A satisfies σ (〈A, ξ〉) ⊂ R for all ξ ∈ Rn.

1. The Monogenic functional calculus is a continuous map f 7→ f(A) for f ∈Mn(γ(A)).
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2. If P ∈ P(Rn), then the Monogenic functional calculus agrees with the Symmetric operator
calculus.

3. Suppose Ω ⊂ Rn+1 is an open set, γ(A) ⊂ Ω, with smooth boundary ∂Ω together with a unit
outer normal ν and surface measure µ. Then, whenever ω ∈ Rn+1 \ Ω,

Gω(A) =
∫
∂Ω
Gζ(A)ν(ζ)Gω(ζ) dµ(ζ).

4. If Ω ⊂ Rn is an open set such that γ(A) ⊂ Ω and f : Ω→ C is a real analytic function, then
f(A) ∈ L (X ).

5. If A is also Paley-Wiener type s then the Monogenic functional calculus agrees with the Weyl
functional calculus for f ∈Mn(γ(A)).

There are many analogous properties that the Monogenic functional calculus shares with both
the Riesz-Dunford calculus and the Weyl functional calculus. The Monogenic functional calculus
also enjoys some spectral mapping properties. Furthermore, it is possible to perform spectral
decompositions analogous to the case of the Riesz-Dunford calculus. A detailed treatment of these
facts can be found in [Jef04, §4.3] and [Jef04, §4.4].
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