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1 Introduction

The classical graph colouring problem has a colourful history dating back about 150 years. This problem
deals with assigning a colour to each vertex such that no two adjacent vertices share the same colour. The
trivial solution to this problem is given when each vertex is given a unique colour. However, in classical graph
colouring, we impose a constraint that we need to use as few colours as possible.

Initially, it was a recreational problem. What is now known as the Four Colour Conjecture was initially stated
by Francis Guthrie. This conjecture states that any planar graph (map) can be coloured using at most four
colours to satisfy the constraints of classical graph colouring. This conjecture was proved by Appel and Haken
in 1976.

We focus on graph colouring with small monochromatic components. Here we relax the constraint that no
two adjacent vertices can share the same colour, and rather focus on minimising the sizes of the maximal
connected monochromatic subgraphs - maximal subgraphs in which all vertices have the same colour. Further,
we focus our attention to graphs of degree < 4 with only two colours.

In this project, we have implemented algorithms EF and HST, derived from the work of [1] and [2]. We have
performed computational experiments from randomly generated 4-regular graphs ranging from a size of 20 to
10000. This has allowed us to study the behaviour of these algorithms with respect to average and maximum
monochromatic component size, as well as with respect to time. Furthermore, analysis of the HST algorithm
has allowed us to extend it to produce a new algorithm EHST.



2 Monochromatic Graph Colouring

We have previously stated that in our problem is different to the classical graph colouring problem. We have
relaxed the condition that no two adjacent vertices may share the same colour. Further, we have mentioned
the notion of a maximal connected monochromatic subgraph. In this section, we define the class of graphs
and set of colours that interest us, and proceed to introduce our problem with mathematical rigour. We also
discuss work that has been conducted in this field. As background knowledge, we assume that the reader is
familiar with basic set theory and basic graph theory.

2.1 Our Graphs

The graphs of our interest are undirected, and connected. Throughout this document, whenever we say
arbitrary graph, it should also be understood as undirected and connected.

Let G = (V, E) be an arbitrary graph. Then, V = V(G), E = E(QG) respectively denote the set of vertices
and edges of the graph G. Let vq,v2 € V be adjacent. Then we denote the undirected edge ¢ € E these
vertices by € = e¢(v112). We assume familiarity with the notion of the degree of a vertex and graph.

Definition 2.1 (\-assignment) Let G = (V, E) be an arbitrary graph. Let C' denote a set of colours, with
|C| = A. Lety:V — C be a map. Then ~y defines a A-assignment on G.

In light of these definitions, we can say that the set of graphs of our interest are denoted by
Oy = {G:degree(G) < 4}, with the colours Cy = {black,white} and the set of assignments T'y =
{v:V = Cq}.

2.2 Maximal Connected Monochromatic Subgraph

We assume familiarity with the concept of a connected subgraph with a property.

Definition 2.2 (Maximal Connected Subgraph) Let G = (V,E) be arbitrary. Let k be a map, p be
some property and let S, = (V,,E,) < G be a connected subgraph with the property p = r(V,). Let
V' be the set of vertices not in V, connected via a single edge to a vertex in V,. That is exactly: V' =
{veV:vegV, [3ueV,:elvn) € E]}. If there exists no vertex n € V' such that k(n) = p, then S, is a
Maximal Connected Subgraph (with property p).

Definition 2.3 (Chromon/Monochromatic Component) Let G = (V, E) be an arbitrary graph, C' a set
of colours, k € C, and v : V — C. Let A = (VA,Ep) < G with v(Vy) = k and A is maximal. Then we
say that A is a chromon or a monochromatic component or a maximal connected monochromatic subgraph
of colour k. The size of this chromon is denoted by |A| given by |A| = [V4].

2.3 Chromon Size

We state the (obvious) fact (without proof) that for any graph G under a A-assignment, and for each vertex
v € V(G), we can find a chromon.

Definition 2.4 (Chromon Set) Let G = (V, E) be an arbitrary graph, C' a set of colours, and v : V — C.
Define:

U(G,C,y) ={Ai <G :A;isachromon ,[Vv € V(G),3A; : v € V(A))]}



Then ¥ = U(G,C,~) is the set of chromons that v produces on G with a set of colours C.

We claim that U is a unique partition of the vertex set V' (Proof A.3, A.4 in Appendix A).

Definition 2.5 ( [\, x|-colourable) Let G = (V. E) be an arbitrary graph. If there exists a \-assignment
~v:V — C such that for all A € U(G,C,~), |A| < K, then we say that the graph G is [\, k]-colourable.

Definition 2.6 (Ordering v) Let G = (V,E) be some graph, with a colour set C and a \-assignment
~v:V — C. Define:

¢(7, ¥(G,C,y)) = max {|A| : A € ¥(G,C,v)}
Then we can say ¢(7vi, ;) < (75, Y;), if o7, ¥(G,C, 7)) < (5, ¥(G, C,v;5))

Let [V(G)| = n. We note that for any A € ¥, 1 < |A| < n (proof A.5 in Appendix A). Then, it follows that
1<¢(y,¥) <n.

We note (proof omitted - trivial):

1. That ¢(v,¥) = 1iff 3k € C, Vv € V(G) such that v(v) = k.
2. That ¢(v,¥) = n iff Vv,n € V(G), if e(vn) € E(G) then v(v) # v(n)

We note that the first of these conditions occur when we colour all vertices of a graph with the same colour.
This is trivial. The second of these is the classical graph colouring problem, if we intended to reduce the size
of C' to a minimum. We wish to get close to the second condition.

2.4 Qur Problem

We have already mentioned the types of graphs and the colours that interest us. Now we state that we are
interested in finding v € 'y which which makes ¢(~, ¥) small. In another interpretation, we want v to make s
in a [2, k]-colouring small. So, we state the problem with which we are concerned. We want to find algorithms
which takes v; as input and produces a +y; as output such that ¢(v;, ;) < ¢(v;, ¥;).

2.5 Current work

We examine two pieces of work done by [1] and [2].

This document uses some of the semantics of [1]. Here, a simple set of operations are presented that achieve
a linear bound on the size of chromons for a given graph. These operations can be used in an algorithm (EF)
to transform an arbitrary assignment of colours to an assignment that usually yields a smaller chromon size.

The work by [2] is of a somewhat more complex nature. They show that it is possible to achieve a constant
bound on the size of chromons for a given graph. From their proof, it is possible to derive a more complex
algorithm (HST). This algorithm is not expected to yield a constant bound since the proof assumes a condition
that would be algorithmically NP-hard. However, we can still expect this algorithm to perform quite well
transforming an arbitrary colouring to one that is locally minimal.

Although there has been masses of work done on classical graph colouring and its generalisations, there has
not been much work done on the small monochromatic components problem.



3 Algorithms

3.1 Terminology
We use some terminology with regard to the algorithms. We note that we only focus on the set of graphs ®,.

Definition 3.1 (Cochromatic Neighbour) Let G = (V, E) € ®4 be some graph, with an assignmenty € T'.
Let v,n € V with e(vn) € E. Then, if v(v) = ~y(n), then we say that n is a Cochromatic neighbour of v.

If a vertex is not a cochromatic neighbour, we say that it is antichromatic neighbour.

Definition 3.2 (4-balanced/balanced vertex) Let G = (V,E) € ®, be some graph, v € Ty, and v € V
satisfying degree(v) = 4. Let the set of neighbours of v be given by N = {n; € V : 3e(vn;) € E}. If
v(m) =~v(m2) # v(ns) = v(n4), then we say that v is 4-balanced (or simply balanced).

Definition 3.3 (2-balanced) LetG = (V, E) € &, be some graph, v € 'y, and v € V satisfying degree(v) =
2. Let the set of neighbours of v be given by N = {n; € V : Je(vn;) € E}. If v(m) # v(n2), then we say
that v is 2-balanced.

Definition 3.4 (Stable vertex) Let G = (V,E) € ®4 withy:V — Ca,v € I's. Let v € V' be some vertex.
If v has more antichromatic neighbours than cochromatic neighbours, we say that v is stable.

We also say that a graph is stable if all its vertices are stable, and unstable if there exists a vertex that is
unstable.

Definition 3.5 (Flipping colour) Let G = (V, E) € ®4 with colour set Cy = {black,white}, v € T's. Let
v € V be an arbitrary vertex. Then, define flip : Cy — Cs:

black  if v(v) = white

flip(y(v)) = {white ify(v) = black

Definition 3.6 (Ripe vertex) Let G = (V,E) € &4, v € 'y and v € V. Define:
M(v) ={n €V :3e(vn),n is 2- or 4-balanced,y(v) # v(n)}

M;(v) € M(v) : Vni,m2 € M;(v), Be(mmnz) € E

Ki(v) = M;(v) « [M;(v)| = [M;(v)]

Ko(v) = Mi(v)\ K1(v)U{n € V : 3e(vn),n is not 2- or 4-balanced,~v(v) # ~v(n)}
Ks(v) ={n eV :3ewn),v(n) =)}

If|K1(v)] + | Ks(v)| > | K2 (v)],

In the following sections when we describe algorithms, we loosely use X + Y to imply X UY and X — Y to
mean X \ Y.

3.2 The stabilise function

The stabilise function derived from [4] is used in the implementation of both algorithms. The idea behind this
function is to restore the stability of a graph when the stability of the local region surrounding v has been
disrupted by flipping the colour of v. The only vertices which can be affected (ie made unstable) by the flip
are the cochromatic neighbours of v (after the flip). We describe the algorithm:



function stabilise (Graph G, vertex v)
X = { cochromatic neighbours of v }

while not_empty (X):
w = element (X)

if unstable (w):
flip (w)

X = X + {cochromatic neighbours of w }
end if

X =X - {w}

end if
end while
end function

The function £f1ip_and_stabilise as described in [4] uses this function. It needs to be emphasised that this
function only works when each vertex of the graph is stable, with the exception of the local area surrounding
flipped vertex.

3.3 The EF Algorithm

We describe the three operations as given in [1] and [4] that form the basis of the EF algorithm.

1. Creating Stable graph
This first operation is concerned with creating a stable graph. We do this by iterating through the
vertices as many times as necessary until there are no more unstable vertices.

2. Balanced vertices
Let v, be balanced adjacent vertices, which are antichromatic. Then we flip v and 7.

3. Reducing chromon sizes
Let v be a balanced vertex. We flip v if doing so makes it belong to a smaller chromon.

We state the EF algorithm as it appears in [1] and [4]. We assume that the graph G = (V, E) € ®4 and we
have arbitrarily assigned a colour to each v € V.

function ef_algorithm (Graph G)
while operation 1, 2, or 3 can be done somewhere in G
if operation 1 can be done somewhere in G, then

do it

else if operation 2 can be done somewhere in G, then
do it

else if operation 3 can be done somewhere in G, then
do it

end while
end function

To efficiently implement EF, we present the following analysis. We note that the condition of stability is very
important in this algorithm. These operations need to be applied in order. One precondition at stage (2)
and (3) is that the graph needs to be stable. However, when (2) is performed, we are potentially making the
graph unstable. Consider what happens to the cochromatic neighbours of the vertices that are flipped. It is
important that after performing (2) that we re-stabilise the graph to the effect of (1). Similarly, operating on



the graph by (3) may cause the state of the graph at the end of (2) and (1) to be changed undesirably. Then,
we need to carry out an operation to the effect of (1) and (2).

The operations of re-stabilising the graph after (2) and (3) can be done locally for efficiency. Since we are
guaranteed of the stability each vertex with the exception of local region around a flip, we can achieve this
by simply looking at the cochromatic neighbours of the vertices we flip. We look at these same vertices to
perform local operations to the effect of (2).

The implementation of the EF algorithm is discussed in Appendix F.2.

3.4 The HST Algorithm

The HST algorithm is a derivation from [2]. The proofs presented in [2] are not explicitly algorithmic. The
derived algorithm is given explicitly in [4]. Throughout this section G = (V, E) € ®4.

Prior to our discussion of the HST algorithm, we describe a function £1ip_and_stabilise() as defined in
[4]. The preconditions are: the vertex it flips is 2 or 4-balanced, and the colouring of the graph is stable. The
post condition is a graph that is stable with the colour of the intended vertex flipped.

function flip_and_stabilise (Graph G, vertex v):
flip (v)

stabilise (G, v)
end function

We note that as with the EF algorithm, the first step in this algorithm is to create a stable colouring of G.
We then attempt to minimise the chromon size of white vertices without giving regards to the component size
of the black vertices. This is achieved by operating on the ripe vertices of the graph, then the white balanced
vertices. We deliver this part of the algorithm as a function initialise_colouring(). Note that in this
function, K (v) = K; (as defined in Definition 3.6).

function initialise_colouring (Graph G):
while unstable (G)
do operation 1 from EF algorithm
end while

while there exists ripe vertex or
white balanced vertex in G:

if there exists v, a ripe vertex:
w = a vertex in K(v)

flip_and_stabilise (w)
else if there exists v balanced, white:
flip_and_stabilise (v)
end if
end while

Given any graph G arbitrarily coloured, this function outputs a graph that is stable and contains white chromons
of size not more than 2. Since the colouring is stable, we can be guaranteed that the black chromons are
always either paths or circuits.

Since initialise_colouring() does not attempt to minimise the size of the black chromons, we may have
effectively increased & in our [2, k]-colouring. In order to reduce k, we need to flip some black vertices. The
following function black_search() searches the black chromons for a set of candidate vertices to flip.



function black_search (Graph G):
s={}

for each B = black chromon:
if B is a circuit:
S = S + { every second vertex of B, but no two vertices adjacent }
else if B is a path:
S =S + { every second vertex of B, but excluding end vertices }
end for

return S
end function

If we consider the set of vertices S as not being coloured either white or black, then effectively, all black
vertices also have chromon size not more than 2. So, our colouring of G'\ S is now a [2,2]-colouring. (or we
can consider the them to coloured “grey” - but this would make it a [3, 2]-colouring of G ). No matter which
colour we assign to each vertex in .S, it will make x > 2 in our final [2, k]-colouring. So we need to make this
choice in a way that would make x small.

We achieve this by creating two directed subgraphs from the vertex set S. We create an edge between two
vertices depending on their distance with respect to black or white vertices. That is, we say that vertex v, n
are distance d apart over black vertices if there exists a path from v to 7 such that we encounter no white
vertices. Similarly we can define distance over white vertices. The structure of these graphs are important in
deciding whether we colour each vertex in S black or white. We denote these graphs in the following function
by H[1], and H[2].

We also claim that operating on the graph by initialise_colouring() makes the graphs H[1] and H|[2]
contain only disjoint paths or circuits. This is a crucial property that we exploit in giving these paths and
circuits a direction. A directed path or circuit (of size > 1) possesses an important property. Either a vertex
has a unique successor or predecessor (or both). There exists no successor or predecessor if our subgraph has
size 1.

The following function assign_final_colouring() is an algorithm that partitions .S into vertices that should
be coloured black and white.

function assign_final_colouring (Graph G, vertex S):
Graph H[1] = (S, E1),

El = { edge (uv): u, v in S,
and distance (u, v) = 2 or 3 over white vertices }
Graph H[2] = (S, E2),
E2 = { edge (uv): u, v in S,

and distance (u, v) 2 or 3 over black vertices }
for each vertex v in H[1]:

find beginning of path or circuit that v belongs to

give that path or circuit a direction
end for

for each vertex w in H[2]:
find beginning of path of circuit that w belongs to
give that path or circuit a direction

end for

X[11, x[2] = {}
U=3s

u = some vertex in U

=U - {u}

a
|



X [1] = X [1] + {u}
i=1
while not_empty (U):
if u has a successor w in H [i] unplaced:

X [3-4i] =X [3 - i] + {w}
U=U- {w}

u=w

i=3-1

else if u has a predecessor in H [i] unplaced:

X [3-1i] =X [3 - i] + {w}
U=0U- {w}
u=w
i=3-1i
else
u = some vertex in U
U=U- {u}
X [1] = X [1] + {u}
i=1
end if

end while

for each vertex v in X[1]:
colour (v) = white
end for

for each vertex v in X[2]:
colour (v) = black
end for
end function

We see that the two sets X [1] and X [2] contain the vertices that are to be coloured white and black respectively.
We choose the vertices that belong in each of these sets by alternating between the two subgraphs and checking
whether we have placed successor/predecessor vertices of each vertex in U already in either set. The alternating
between the graphs permits us to achieve a small  in our final [2, k]-colouring of G.

We state the HST algorithm combining these three functions together:

function hst_algorithm (Graph G):
initialise_colouring (G)
S = black_search (G)

assign_final_colouring (G, S)
end function

Implementation specifics are given in Appendix F.3.

3.5 The EHST (LASHI) Algorithm

The EHST algorithm is essentially an extension of the HST algorithm. There are three main features that
make it distinct from HST. Since the bulk of the algorithm is identical to the HST, we will refer to section
§3.4 and only present the changes.

The first difference is the initialise_colouring() function. We call the EHST version
einitialise_colouring() and describe it:



function initialise_colouring (G, v):
while unstable (G)
do operation 1 from EF algorithm
end while

while there exists ripe vertex or
white balanced vertex in G:

for each vertex v in G:
if v is a ripe vertex:
w = a vertex in K(v)

flip_and_stabilise (w)
else if v balanced, white:
flip_and_stabilise (v)
end if
end for
end while

This only contains a subtle difference from the function in §3.4. In §3.4, we only look at white balanced
vertices iff there exists no ripe vertex. When ever we flip a white balanced vertex, it may create a ripe vertex,
so we need to look at all the ripe vertices again.

Our implementation paves the way for greater optimisation during implementation. We look at each vertex,
and if it is ripe, we perform the ripe operations, and if not, we check whether it is white and balanced. So in
effect, our implementation permits a white balanced vertex to be flipped while there could still be ripe vertices in
the graph. We conjecture that einitial_colouring() is functionally equivalent to initial_colouring().
We leave this unproven.

The second function to which we make a subtle amendment to is assign_final_colouring(). This amend-
ment is made in the while statement. We call our version eassign_final_colouring() and define it below
(note we only give the while statement - all other parts are identical).

function eassign_final_colouring (Graph G, vertex S):

while not_empty (U):
if u has a successor w in H [i] unplaced:
X [3 -4l =X [3 - il + {w}
U=0- {u}

if u has a predecessor z in H [i] unplaced:
X [3-1i] =X [3 - 1i] + {z}

U=0U-{z}
us=z

else
u=w

else if u has a predecessor in H [i] unplaced:

X [B3-1i] =X [3 - i] + {w}
U=U- {w}
u=w
i=3-1i

else
u = some vertex in U
U=0U- {u}

X [1] = X [1] + {u}



end if

end while

end function

Unlike in §3.4, we ensure that when a vertex v has both a predecessor and successor in H|[i], we give the
predecessor and successor the same colour opposite that of v. From analysis of local regions for when the
HST produced component sizes > 6, we find that this alteration eliminates this undesirable effect most of the
time.

The last change is to add a new function, minimise_chromons (). We define this function:

function minimise_chromons (Graph G)
for each vertex v in G:
if flipping v would make it belong to a smaller chromon:
flip (v)
end if
end for
end function

Analysis of the HST implementation revealed that the HST algorithm could do better if it were to perform
an operation similar to the third operation of the EF algorithm. Further analysis of the local regions around
chromons of size > 6 produced by the HST algorithm showed that it could do better by flipping some of the ver-
tices. It is important to note, however, that after the graph has been operated on by minimise_chromons (),
we can no longer guarantee that the components will be paths and circuits. That is, we have not looked
closely enough at the graph after this step to determine whether the colouring is stable.

We now give a top-level description of the EHST algorithm:

function ehst_algorithm (Graph G):
einitialise_colouring (G)
S = black_search (G)
eassign_final_colouring (G, S)
minimise_chromons (G)

end function

Some implementation details are given in Appendix F.4.
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4 Random Graph Generation

We discuss the second algorithm presented in [3] and [5] for generating 4-regular graphs that are approximately
uniformly distributed. The following discussion is an elaboration on [3] and [5].

The graphs we wish to generate are are undirected. Thus, we know that an undirected, arbitrary graph of
size n of degree n can have at most nn=1) possible edges. Although we only deal with 4-regular graphs, in
order for us to place edges uniformly, we need to look at all these possible edges. We call a possible edge a
pseudo-edge, which is simply a pair of vertices denoted by un where p,n are vertices. For each pseudo-edge
we associate a weight:

Ty = (4 — degree(p))(4 — degree(n))

Let S be the set of all allowed pseudo-edges. We define a normalisation variable R:

R = Z Tun

uneS

Note that: R =0 <= [ru, =0,Yu,n: p#n.

We define the probability of making a pseudo-edge an edge:

r 7
Pr () = =22

When choosing an edge, the following constraints need to be satisfied:

1. If an edge €(un) exists in the graph, then we disallow placing an edge nu.

2. We can never have an edge upu.

We create a list L from the items in .S so that L = [pof1, fopi2, - - - n—14n]. We denote element ¢ of L by:
element(i, L). Then, for element i in the list, we define I; inductively:

I(0) = Pr(element(0, L))
I(n+1) = I(n) + Pr(element(n+1,L))

Since Y Pr(un) =1, then > (41 — I;) = 1. Initially, all pseudo-edges have equal probability.

We state (our) version of the algorithm:

function random_graph (size n)
R=16*nx* (n-1) / 2
L = [ List of pseudo-edges ]

while (R > 0 ):
U = uniform_random_number in [0,1)

pick the pseudo-edge element(e, L) such
that I(e) <= U < I(e+1).

place edge e in G
remove(e, L)

Recompute R.
Recompute I(e) for element(e,L).

end while

Output: G a graph.
end function

11



By the property we stated earlier, when R = 0, we must have all r,;, = 0. In some instances, however, this
does not guarantee that the graph is 4-regular. Thus, it is important that we check whether we have 2n edges
in our graph. If not, then we need to try again.

Some implementation details are provided in Appendix E.
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5 Guide to using the software

5.1 Using graphwrite

The graphwrite utility allows the user to create uniformly distributed, random 4-regular graphs which can
consequently be used as input for the process utility. It allows for graph creation to be parallelised to allow
clusters to create large graphs which would be time consuming as a serial operation.

Its interface is primitive: graphwrite n k output_filename

The first two arguments are mandatory. The command above would create k£ graphs of size n. If the last
argument (i.e., output file) is omitted, then the graphs will be written to the console.

As an example, the following command: graphwrite 3000 10 3000-10.graph would create 10 graphs of
size 3000 to file 3000-10.graph. A more complex example would be where a cluster of nodes with hostnames
node0 to node3 will be used to produce a total of 12 graphs for size 10000:

ssh node0 graphwrite 10000 4 10000.0
ssh nodel graphwrite 10000 4 10000.1
ssh node2 graphwrite 10000 4 10000.2
ssh node3 graphwrite 10000 4 10000.3

All errors detected by the program will output some useful message. These errors can generated at many
nested levels, and are handled by the exception handling environment. These errors will not be listed here. If
core-dumps are enabled, a core file will usually be created. However, it is worthwhile noting a common error
that the user may encounter:

generator.c: 91: initialise failed to allocate memory to node edge_list
Aborted

This error means that there is not enough physical memory to create the graph of the specified size. This is
not a bug in the software. The only remedy is to increase the physical memory.

Format of graph files are discussed in Appendix C.

5.2 Using process

The process utility runs the three algorithms on a set of graphs and reports various statistics for each graph
and a summary for each algorithm.

It has a minimal command line based interface: process options.

The options are given by:

e ——helpor -h
Prints out a simple help screen to to allow a user to quickly understand the basics of the utility.

e —-version or -v
Prints out version information, compiler information, and optimisation information.

e —-input graph or -i graph
Read graphs from a file named graph.
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e —-output stats or -o stats
Output information to filename stats.

e ——max-limit kor -m k
Issued with -1, this reads at most k& graphs from the file. It reads < k graphs if it encounters end-of-file
first. Without —, the software randomly generates k graphs.

e ——sizenor-s n
Generate graphs of n vertices.

If no options or only -m is specified, then process will interactively ask the user to input the size of graph to
produce. If -m is omitted, then the behaviour is equivalent to if -m 1 was issued. If -1 is specified without
-m, the all the graphs in the specified file will be used.

If both -i and -s are specified, then the former argument will be given precedence. That is, process would
always prefer to read graphs from a file than to create them randomly.

The following example illustrates reading in graphs from a file k-graph and outputting results to k-graph.results:
process -i k—graph -o k-graph.results

We randomly create 25 graphs of size 1000 and the results are written to the console:
process -s 1000 -m 25

We read the first 3 graphs from file graphs and output to graphs-3.results:
process -i graphs -m 3 -o graphs-3.results

This software, on error, will produce useful messages. Thus, the list of possible abnormal exit conditions will
not be discussed here. Among the more common are parse errors in a malformed graph file. Furthermore, if
a single graph (it may be the last graph) is defined incorrectly, then process will abandon its efforts and will
refuse to report results.
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6 Testing

In order to build a stable and correct system, testing was performed according to the scheme described below.
It is important to note that the following scheme works as a consequence of the software development model.
The code is also written such that during compilation, certain flags could be enabled which includes more
code for debugging and verbose output. This is explained in Appendix B. We describe our testing scheme:

1. All primitive functions and methods were given some strictly defined behaviour on all inputs. That is,
boundary conditions were correctly identified, and invalid input was correctly dealt with, along with the
general behaviour.

2. These primitive functions and methods were then tested on these inputs. It was ensured that the correct
behaviour was produced on these inputs.

3. Higher order functions and methods are built from the primitive ones. These functions have a logical
behaviour defined in terms of the behaviour of the constituent primitive functions which are known to
be correct. Thus, we reason that the emergent behaviour must also be correct. Test cases were also
thrown at these higher order functions for the purpose of verification.

Assertions are only enabled when debugging flags are enabled during the compilation of software. They are
disabled by default for efficiency.

In the source tree, the testing directory includes various code used for testing. It is important to note that
some of the methods defined in the data types are given for completeness. They have not been used in this
software. Due to the lack of time, these methods have not been tested thoroughly, and no guarantee can be
made that they will behave correctly. However, all methods of the data types used in the software have been
tested throughly.

In algorithm testing, the constituent parts were initially tested with known inputs. Then, the whole algorithm
was tested on some small graphs to verify that they produced expected behaviour.
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7 Computational Experiments

7.1 Creating Graphs

Graph creation takes the most amount of space and time. For instance, in order to produce a graph of 10000
vertices, the generator needs 763M B memory from the heap. So the approach taken was to create graphs
using the graphwrite utility and store them into a file.

We created graphs of size 20 — 100 in steps of 20, 100 — 1000 in steps of 100 and 1000 — 10000 in steps
of 1000. For each of these sizes, we created 25 graphs. The Monash Parallel Parametric Modelling Engine
(PPME) cluster was the main piece of hardware used to create the graphs. The following is a more complete
description of the apparatus. Note that some node machines on the cluster were SMP and others non-SMP.
The output describing hardware is extracted from the dmesg of the Linux kernel for accuracy.

e Hostname of (used) nodes: node01l-nodel5, node22, node23, node25, node33.

e CPUO: Intel(R) Pentium(R) 4 CPU 3.00GHz stepping 09 (Non-SMP)
CPUI: Intel(R) Pentium(R) 4 CPU 3.00GHz stepping 09 (SMP)

e Memory: 1031356k

e Linux kernel version 2.4.22-xfs (non-SMP) or 2.4.26-1-686-smp (SMP)
e Operating System: Debian GNU/Linux testing/unstable.

o Libc6 version: 2.3.2.ds1-12

o Compiler: gce (GCC) 3.3.3 (Debian 20040401)

The following was the method employed in graph production:

1. For small graphs (20 — 1000 vertices), the job was launched onto a single node with the command:
ssh nodei graphwrite k 25 k-run
where k was the size of the graph, and ¢ the number of the node.

2. For larger graphs (2000 — 7000 vertices), this workload was spread over the nodes - that is, each graph
size was assigned to a unique node, with all 25 graphs produced by that node.

3. For the very large graphs (8000 — 10000 vertices), the workload was spread out over about 15 nodes,
with each node producing 2 — 3 graphs. These graphs were combined into one file with the command:
cat k-run.1 k-run.2 k-run.3 ... k-run.n > k-run

4. Random number generation was done via the function drand48(). Random seeding was done by reading
from the random source /dev/random.

7.2 Running Algorithms

The algorithms take a considerably small amount of time than the graph generation procedure. Hence, slower
hardware was used to measure the performance - in an attempt to increase the resolution of the measure.

The following were the apparatus used to test the algorithms:

e Processor: Motorola 745/755 600MHz PowerPC G3 (Revision 51.17 (pvr 0008 3311))
e Memory: 384MB
e Linux kernel 2.6.6
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e Operating System: Debian GNU/Linux Unstable.
e Libcb6 version: 2.3.2.ds1-12
o Compiler: gcc (GCC) 3.3.3 (Debian 20040422)

The following procedure was used to test the algorithms:

1. All time measurements were done by calling getrusage () system call, which allows accounts for kernel
level preemption.

2. For each file graphfile containing the graphs of the same size, the following command was run:
process -i graphfile -o graphfile.results.

3. The script createplot.sh was run on each output file produced by process to produce a Gnuplot
plot file. Then for each algorithm EF, HST, EHST respectively, the following command was issued in
the directory where the result files were stored:
createplot.sh EF > plot-ef.data,
createplot.sh HST > plot-hst.data,
createplot.sh EHST > plot-ehst.data.

4. Then
texproduce plot-ef.data > plot-ef.tex,
texproduce plot-hst.data > plot-hst.tex,
and texproduce plot-ehst.data > plot-ehst.tex
was issued to produce a IATEX table.

7.3 Results

The tables of results are given in the Appendix G.

7.4 Error

Our main concern with errors in our measurement is with measuring the time taken by the algorithms.

We have used RISC hardware since we believe that the calculated time better reflects the number of elementary
instructions in the algorithm. Furthermore, we have attempted to minimise error resulting from software by
using the getrusage() function to compute the time each algorithm has spent on the processor. This is
a more accurate measure than time-stamping (ie, using gettimeofday()) since this deals with acquiring
information from the kernel about how much time a process has spent on the processor. Furthermore, we only
take into account time spent in user mode since it was assumed that time spent system mode is irrelevant
to the actual functionality of the algorithm. It can be seen from the standard deviations given in the tables
in Appendix G that getrusage() is an accurate measure. For small graphs, however, we find significant
error. This is most likely due to the fact that the hardware is too quick to be able to measure the algorithms
effectively for small graphs.

7.5 Discussion

We used a sample space of 25 graphs for each size of graph. We varied the size of graphs from between 20 to
10000. Our analysis will primarily focus on the large scale behaviour of the algorithms. We discuss in detail
four particular aspects measured, which can be found in the tables given in Appendix G.

We know from [1] that the EF algorithm is bounded sub-linearly in terms of maximum monochromatic com-
ponent size. The curve in Figure 1 illustrates this. We hypothesise that the HST implementation may also
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bounded sub-linearly since it exhibits similar behaviour to the curve produced by the EF algorithm. This
hypothesis is consistent with figure 2, where we see a maximum monochromatic component size of 7 from
a size of 300 to 2000, and a sudden jump to 8 for > 2000. Following this pattern, we might expect that at
some graph size k > 10000, the maximum monochromatic component size will jump to > 8.

We also note that the EF and HST algorithms exhibit slightly erratic behaviour in terms of maximum chromon
size. The standard deviation values (in Appendix G) for these two algorithms seems to suggest this. Figure
2 shows particularly well how the maximum monochromatic component size jumps erratically for the EF
algorithm.

Unlike EF and HST, Figure 1 illustrates that the maximum monochromatic component size for the EHST
algorithm is likely to be bounded by a constant. The curve here looks “more” logarithmic than for the
other algorithms. This is also reflected for the values in the table, which shows that the average maximum
monochromatic component size is reaching some limit < 6. Unlike the EF and HST algorithms, the data
points here are well behaved, and their variation is small. We see that the standard deviation (in Appendix G)
for the maximum monochromatic component size is smaller than that of the other two algorithms. Thus, we
claim that the EHST algorithm increases in maximum chromatic component size logarithmically. Furthermore,
from our analysis, we conjecture that the maximum monochromatic component size is bounded above by 6.

Figure 3 illustrates that all algorithms converge to some minimum with respect to average monochromatic
component size. It is interesting to note that the average monochromatic component size of the HST al-
gorithm is lower than the EHST algorithm, although the EHST algorithm performed much better in terms
of maximum monochromatic component size. There is only one conclusion that could be drawn from this -
the EHST algorithm makes a trade off between the average monochromatic component and the maximum
monochromatic component size to reduce the latter. In other words, the EHST algorithm favours a lower
maximum monochromatic component size over a lower average monochromatic component size. The EF
algorithm performs quite poorly here, and the difference between HST and EF is much larger than HST and
EHST as seen in figure 3. This, however, disproves an erroneous conclusion that could have been made
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from our discussion of the HST as compared with EHST. That erroneous conclusion is: A smaller average
monochromatic component size implies a larger maximum monochromatic component size. This is not true in
general, as the EF algorithm illustrates. In fact, we can say that EHST chooses to favour a smaller maximum
component size over a smaller average component size. There may exist an algorithm whereby both a lower
maximum and average component size may be achieved.

The running time of the algorithms are illustrated in Figure 4. At a glance, these graphs show that all three
algorithms are likely to be of complexity O(n?). We can say with certainty that they are non-linear. The
quickest of these is the EF algorithm. We see that the HST and EHST algorithms are slightly slower than the
EF algorithm, and that the EHST algorithm is slightly slower than the HST. This is expected since the EHST
algorithm has an extension to the HST and does some extra work which is linear time bounded.

Although we previously discussed the possible error introduced in computing these timings, we have quite
specifically focused on the large scale behaviour of the algorithms. From our results tables, we find that for
large n, the standard deviations are small compared with the magnitudes of the times. Furthermore, as n
increases, this ratio becomes smaller, which suggests that our measure becomes more accurate as we look at
larger and larger graphs. Hence, we can conclude that our measurements are accurate and depict the true
behaviour of these algorithms with respect to time.

7.6 Conclusion

We can see that the EF algorithm works quite well for graphs of up to 1000 vertices in comparison with the
HST algorithm. This is a surprising result since the EF algorithm works with a much simpler set of operations
as compared with the HST algorithm. Even for graphs > 1000 vertices, we find that the EF algorithm performs
reasonably well, although its behaviour in terms of maximum monochromatic component size is slightly more
erratic than that of the HST algorithm.
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The EHST algorithm outperforms these, and is quite well behaved for all the graphs tested. This algorithm
always yielded a maximum component size of < 6. So, we conjecture that the EHST algorithm is in fact
bounded above by a constant of 6 in terms of maximum component size. This is probably the most important
result to come through from this experiment. We know from [2] that such algorithms can exist. However,
a direct conversion of the proof in [2] to an algorithm requires solving a NP-Hard problem to achieve this
constant bound. The simple extensions to the HST which yielded EHST has achieved this for all the graphs
tested.

There is some interest which has been a consequence of this work. Primarily, the EHST algorithm should be
pursued further. It would be interesting to mathematically prove that this does in fact achieve what [2] claims
since this would give a polynomial time algorithm to one that requires solving an NP-Hard problem. However,
it is anticipated that this may actually be difficult since EHST no longer guarantees that components are
paths or circuits - a property which has elegant mathematical features. Furthermore, it would be worthwhile
to perform computational experiments on larger graphs. It would also be interesting to see whether similar
extensions could be done to the EF algorithm which would yield better results. It may also be possible extend
HST algorithm further to work as effectively as EHST in terms of maximum component size while keeping
the average component size at least as low as HST.
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A Appendix - Proofs of some results

Lemma A.1 Let G be some arbitary graph, C a set of colours, and gamma : V(G) — C. Let ¥ denote the
set defined in Definition 2.4. Then U # ().

Proof

We assume that V(G) # 0. The, we can find v € V(G). Let y(v) = k € C. Then we are guarenteed to find
a chromon A € W such that v € V(A). Then A # 0 which implies 9 # (.

Lemma A.2 Let G be an arbitary graph, C a set of colours, and v : V(G) — C. Let U denote the set
defined in Definition 2.4. Let A;,A; € U. Then

IS V(Al), andv € V(AJ) “— A, = Aj

Proof ( <)

Trivial. If A; = A;, then it neccessarily follows that V/(A;) = V(A;). Then, v € V(A;) <= v € V(4;).
Proof (=)

We note that if V(A;) = V(A;) = E(A;) = E(A;). since A, Aj <G.

Suppose that v € V(A;) and v € VI(A;) but A; # A

Let n € V(A;),n & V(A;), satisfying e(vn) € E(A;) € E(G). This must exist, since if it did not, then A;
would be a disconnected subgraph, which we know is a contradiction.

Let v(v) = k,3k € C. Then v(V(A;)) = v(V(A;)), which implies that v(n) = k.

Then we have v € V(A;) with n € V(A;) and e(vn) € E(G), and y(v) = ~v(n). This implies that A; is not
maximal, which is a contradiction.

(]

Proposition A.3 (Partition of a Graph) Let G be an arbitrary graph, and C a set of colours, and ~ :
V(G) — C. Let U denote the set defined in Definition 2.4.

Proof
Lemma A.1 shows that ¥ # (). Lemma A.2 shows that for A;,A; € U, ifv € V(A;),v € V(A;) <= A; = A;.
In other words, no two chromons contain the same vertex. Since for any v € V(G) we know that there exists

a A € U (by definition of ¥) with v € V(A). These Lemma'’s suggest that ¥ is indeed a partitioning of the
vertex set V(G).
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Proposition A.4 (Uniqueness of Partition) Let G be an arbitrary graph, C a set of colours, and v :
V(G) — C. Let U be the set defined in Defintion 2.4. Then VU is unique.

Proof

Suppose that ¥ is not unique. Then there must be two partitions V1 = U1 (G, C,v) # Ya(G,C,y) = Vs,
Then we can find a vertex v € V(G) statisfying v € V(A;),v € V(A;) for A; € Uy, Aj € ¥y with
V(M) # (A)) = A # A

We know that Wy, ¥y are produced by the same 7. So, by Lemma A.2, we must have A; = A;. This is a
contradiction. So ¥ = WUs.

Proposition A.5 (Bounds on chromon size) Let G be abitrary, with C' a set of colours, and~ : V(G) — C.
Let U denote the set defined in Definition 2.4. Let |V(G)| =n. Then for any A € ¥, 1 <|A| < n.

Proof

We know from Proposition A.3 that W is a partition. From the definition of ¥, we know that for any v € V(G),
there exists a A € ¥ with v € V(A). It follows that:

A
DIV =n
i=1
where A; € ¥ and A; # A; for i # j. Since we define |A;| = |V (A,)|:

4

> Al =n
=1

It follows that |A;| < n. It is also true that |A;| > 0, since A; # (). Since |[A;| €N, |[A;| >0 = |A;] > 1.
Then,
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B Appendix - Notes on building the software

Building the software is done by simply issuing a make at the top level of the source tree. A make clean
removes all object and binary files. The following is a description of each level of the source tree:

e algorithm - source code of all the algorithms.

e exception - exception handler sources.

e generator - random graph generator source code.

e monograph - source code of the abstract data structures.

e program - source code of the software interfaces.

e testing - some utlilities that were written for testing.

e include - the headers files for the different parts of the software - they are in appropriate subdirectories.

e 1ib - where the libraries are stored after they are built.

There are some parameters in the Makefile that can be adjusted to fine tune software compilation process.
The first is the USERFLAGS variable. Generally, for debugging purposes, USERFLAGS=-D__DEBUG__ is set. This
causes the most critical parts of the software to be verbose. It should not be enabled for normal use.

Secondly the CC variable sets the compiler to be used. The code in the source tree uses some extensions by
gcc. So, this variable should only be changed if a different version of gcc is to be used when compiling.

Lastly the OPT variable sets the optimisation flag to use. It is by default set to OPT=-02. If the code is to be
debugged with the GNU DeBugger, then 0PT=-ggdb3 should be set.

All other variables are only for internal use. It is not advisible that they should be altered.
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C Appendix - Graph file format

The format for storing graphs allows graph files to be mainpulated using standard Unix™ text file com-
mands. All graphs are separated by a ; symbol. An edge connecting two vertices u and v is given by
(u,v). From the last the example given in §5.1 graphs can be combined into a single file by the command:
cat 10000.0 10000.1 10000.2 10000.3 > 10000-12.graphs.

For clarity, we an example of two graphs of size 6 stored in a single file

(0, 1)
0, 2)
(0, 5)
0, 4
1, 2)
(1, 3)
(1, 5)
(2, 3)
2, 4
(3, 5)
3, 4
(4, 5)

0, 3)
0, 4
(0, 5)
(0, 1)
(1, 5)
1, 2
1, 4
2, 4
2, 3)
(2, 5)
3, 5)
3, 4

)
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D

Appendix - Data Types

D.1 Node

The Node type is an implementation of a vertex, defined in include/monograph/node.h:

typedef struct _Node Node;
struct _Node {
unsigned int id;
Colour colour;
unsigned int neighbours;
Node *neighbour [DEGREE];
NodeOps *method;

};

The id field associated an identifier. The colour field associates a colour with the node and the neighbours
field gives the degree of the node. The neighbour i can be accessed by dereferencing neighbour [i]. The
recommended approach to manipulating a node is via the method variable which allows access to the methods
defined on a Node. This is especially true for destructive updates (i.e., writing) than for reading.

We have a constructor and destructor for this type:

e Node *create_node (unsigned int i)

Returns a pointer to an initialised node object, with default colour black, with id=i.

e void delete_node (Node *n)

Deletes the object pointed to by n.

The following are the method defined on the Node structure. Note that the first argument of each method is
a pointer to a Node object.

unsigned int get_id (Node *n)
Returns the id of the object n.

void add_neighbour (Node *n, Node *neighbour)
Adds the neighbour neighbour to n, if that neighbour doesn't already exist. It also maintains neighbours.

Node *get_neighbour (Node #*n, unsigned int i)
Returns the neighbour in neighbour [i]. If there exists no such neighbour, NULL is returned.

void del_neighbour (Node *n, Node *neighbour)
If neighbour is a neighbour of n, then neighbour is removed from n's neighbours list.

unsigned int neighbour_count (Node *n)
Returns neighbours, i.e., the number of neighbours n has.

Colour get_colour (Node *n)
Returns the current colour of the node n.

void set_colour (Node *n, Colour c)
Changes the colour of n to c.

void invert (Node *n)
If the colour of n is black, then it is changed to white. If it is white, then it is changed to black.
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e void reset (Node *n)
This resets the status of n as if it were newly created. All neighbours are removed, and the colour is
reset to black.

An example of access to a method would be: n->method->invert (n);.

D.2 MonoGraph

The MonoGraph Type is an implementation of a graph of degree 4 that can be coloured black or white. This
type is defined in include/monograph/graph.h:

typedef struct _MonoGraph MonoGraph;
struct _MonoGraph {
unsigned int vertices;
Node *xylist;
MonoGraphOps *method;
I

The vertices field keeps track of the total size of the number of vertices, and vlist [i] allows access to
the node with id=i.

Objects of this type should only be created via its constructor and destructor.

e MonoGraph *create_graph (unsigned int v)
Create a graph of size v, and return a pointer to it.

e void delete_graph (MonoGraph *g)
Delete the graph pointed to by g.

The field method defines the methods that are implemented for this type. It is recommended that these
methods are used for read/write access. It is particularly not recommended to perform destructive updates
outside of these methods. The following are the methods defined on this type:

e Node **get_nodes (MonoGraph *g)
Returns the vlist.

e Node *get_node (MonoGraph *g, unsigned int node)
Returns vlist [node]. That is, the node with id=node.

e unsigned int get_size (MonoGraph *g)
Returns the size of g, that is vertices.

e void connect (MonoGraph *g, unsigned int v, unsigned int u)
Adds the u node to the neighbours of v node. This should only be used to build directed graphs. If v
cannot add another neighbour, then an exception is raised as a warning, but not to abort.

e void uconnect (MonoGraph *g, unsigned int v, unsigned int u)
Works like the previous method. However, this also adds v as a neighbour of u. This is the way to build
undirected graphs.

e void disconnect (MonoGraph *g, unsigned int v, unsigned int u)
If uis a neighbour of v, then u is removed as a neighbour of v. Otherwise, nothing is performed. Calling
this asymmetrically on an undirected graph causes it to become directed.
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e void reset (MonoGraph *g)
Returns the graph to a state as if it was newly created.

e MonoGraph *duplicate (MonoGraph *g)
Duplicates the graph exactly, and returns a pointer to a copy.

D.3 List

The type List is an important type frequently used throughout. It is defined in include/monograph/list.h:

typedef struct _ListNode ListNode;
struct _ListNode {
void *data;
ListNode *next ;
ListNode *prev;
};
typedef struct _List List;
struct _List {
ListNode *root;
ListNode *xlast;
unsigned int length;
ListNode *cur;
ListOps *method;
1

The ListNode data structure is an internal structure used as the container type to store the data. It allows
for genericity by bypassing the typing mechanism, by making the data field of type void *. It is, therefore,
the programmer’s responsibility to ensure type consistency. The next and prev fields are used to link each
the nodes appropriately in the list.

In the List structure, the field root is a pointer to the start of the list, and last to its end. The cur field
is used for internal caching, to speed lookup and also to bookmark for methods that require “remembering”
the previous position. The field length specifies the number of items in the list.

It is important to note that even the destructive methods described below do not modify the stored data in
data. This implies that it is the programmer's responsibility to remove allocation of data to avoid memory
leaks.

The List objects should be created and destroyed using the constructor and destructor provided:

e List *create_list (void)
Returns a List object.

e void delete_list (List *1)
Deletes the List object 1.

The methods are accessed via the method field. The methods provided are described:

e void ¥head (List *1)
Returns the element pointed to by root, and removes that element from the list. If the list is empty,
then NULL is returned.
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e void *ndhead (List *1)
Like the previous operation, but does not remove the root element. Thus, consecutive calls will return
the same data.

e void *next (List *1)
Sets the cur field to cur->next, and returns the data in cur. If cur is NULL, then cur is set to root.
If cur is last, then NULL is returned.

e void *prev (List *1)
Sets cur to cur->prev and returns the data in cur. If cur is NULL, then cur is set to last. If cur is
root, then NULL is returned.

e void map (List *1, void (*mapfunc) (void *data, void *param), void *param)
Takes a function of type void f (void *d, void *p), and applies it to all the elements of the list,
where d is an item (ie data), and p is the param passed to this method.

e ListNode *cons (List *1, void *data)
Adds data to the start of the list, and returns a pointer to the container holding data.

e ListNode *append (List *1, void *data)
Like previous, but attaches to the end of the list.

e List *merge (List *1, List *m)
Merges the elements of the list m into 1. This destroys the object m.

e unsigned int length (List *1)
Returns the length of the list 1.

e unsigned int nlength (ListNode *n)
Returns the length of the list from n to the end of the list.

e void reset (List *1)

Sets cur to NULL.

Unlike the other data types, it should be emphasised that the list structure is optimised and complex. Any
access (possibly with the exception of finding length) should be done strictly via the methods.

D.4 ChromonlList

The ChromonList data type is optimised for maintaining the chromons of a graph. It is defined in monograph/chromon. h:

typedef struct _ChromonList ChromonList;
struct _ChromonList {

List *black;

List *white;

/* Keeps track of which chromon each node is in */
ChromonV *vertice;

/* We need to access the graph */
MonoGraph *graph;

/* Methods */
ChromonQOps *method;
};

The black and white fields keep track of the chromons which are of colour black and white respectively.
They are lists of lists. That is, a data field of an item in black itself is a list. But this list is a list of Node
objects. The list specifies the vertices belonging to a chromon.
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The vertice field keeps track of the chromon to which each vertex belongs to. The type ChromonV is simply
a list. This allows O(1) access to any chromon given a vertex. The graph field stores the graph for which the
chromons are maintained.

Creation and destruction of ChromonList objects should be done via the constructor and destructor:

e ChromonList *create_chromonlist (void)
Returns a ChromonList object.

e void delete_chromonlist (ChromonList *c) Destroys the object c.
The methods are accessed via method. They are:

e void discover (ChromonList *c, MonoGraph *g)
Discovers the chromons of a graph g.

e void rediscover (ChromonList *c, List *1)
Expects 1 a list of Node objects. It rediscovers the chromons to which each Node object belongs to in
the ChromonList object c. It leaves the list 1 empty upon successful completion. If discover has not
been called previously, it does nothing.
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Appendix - Graph Generator Implementation

The main data structure that the generator uses is defined in include/generator/generator.h:

typedef struct _Edge Edge;
struct _Edge {

unsigned int u;

unsigned int v;

unsigned int r;

unsigned int interval;

};

In this data structure, u and v are the two ends of this pseudo-edge. The value r is ry, . defined in §4.

The approach is to keep an array of size @ of Edge structures. Then, at each instance, our value for
interval is given by adding r to the interval of the previous index. For the index 0, our interval is simply
the r value. When an edge is added, we move the pseudo-edge stored at the last index to the position of
the added pseudo-edge, and decrement the size of our array accordingly. We then recompute the relevant r
values, and recompute the interval values of the whole array.

This is a description of the functions which are used in the implementation of the graph generator:

MonoGraph *generate_graph (unsigned int vertices)
This is the caller function which calls other appropriate internal functions and returns a random 4-regular
graph of size vertices. It ensures that the graph returned is 4-regular.

MonoGraph *generate_graph (unsigned int vertices, long int seed)

This is another caller function which calls generate_graph(), but it uses the value seed as a seed
to the random number generator. If the seed given produces a graph that is not 4-regular, then the
behaviour is changed to that of generate_graph() to avoid looping forever.

void initialise (void)
This function gets allocation for the pseudo-edge array, sets the correct value of the normalisation
variable, and creates the array of possible edges.

void place (unsigned int i, unsigned int j)
Helper function, called by initialise () when it is creating the array of pseudo-edges. It takes care of
placing all the appropriate values in each field of Edge.

void init_random (void)
This function seeds the random number generator by reading a long int from the random source
/dev/random.

void make_graph (void)

This implements the main loop for generating the graph. It produces a random number, finds the
pseudo-edge to which it belongs, and adds the edge to the graph. It uses a binary search on the array
for efficiency.

void update_list (unsigned int index)

Helper function called by make_graph(), when it has added the pseudo-edge given by index. This
function makes the array consistent again for the next run, updates the normalisation variable, appropriate
r values and the interval of each pseudo-edge.

When a pseudo-edge un is added, we define the appropriate r value to mean any edge that has one end in one
of the vertices p or . The graph generator implementation uses optimised rules for updating the normalisation
variable and the appropriate r values.
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F.1

Appendix - Algorithm Implementations

Generic Functions

These are functions which are independent of the specific behaviour of a particular algorithm and are useful
for all. They are defined in monograph/generic.c.

F.2

bool stable (Node *n)
This function takes a Node object, and returns true if it is stable, and false otherwise.

bool balanced (Node *n)
Returns true if the Node object n is 4-balanced, and false otherwise.

bool balanced2 (Node *n)
As previously, but for 2-balanced vertices.

gstabilise (MonoGraph *g)
This function gives an assignment to the vertices in g such that all vertices are balanced. On input, the
vertices in g can be arbitrarily assigned a colour.

void print_chromonlist (ChromonList *c)
Function useful for debugging, as the name suggests. Given a ChromonList object ¢, it outputs it to
stdout in a human readable form.

unsigned int cochromatic (Node *n)
Returns the number of co-chromatic neighbours that n has.

void stabilise (Node *n, List *fliplist)

Given that the all the vertices of graph to which n was stable, and n was flipped, it returns all possible
affected vertices of n (and thus all vertices of the graph) back to a stable state. If fliplist is not
NULL, then it adds all flipped vertices to this list.

void flip_and_stabilise (Node *n, List *fliplist)
Expects n to be balanced and the graph to which n belongs stable. It flips n and calls the stabilise()
function. Then, the graph to which n belongs will still be stable but with n flipped.

EF Algorithm

We describe the (relevant) functions used in implementing the EF algorithm.

ChromonList *ef_algorithm (MonoGraph *g)
Caller function. Given a graph g, it runs EF on the graph and returns a ChromonList object.

void operationa (MonoGraph *g)
This function simply does a gstabilise() on the graph g.

void operationb (MonoGraph *g)

This expects all vertices in g to be stable. It creates a list of candidates for operation (b) and calls
opb(). As a postcondition, we have a graph that is both stable and operation (b) cannot be done any
further.

ChromonList *operationc (MonoGraph *g)

This takes a graph which is stable and with operation (b) complete. It builds a list of candidates for
operation (c) and calls opc (). As a postcondition, we have a graph that has operation (a), (b), and (c)
done such that none of these operations can be done any more.
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e void opb (List *wlist, List *opbflips)
This function expects the vertices in wlist as the candidates for operation (b). For each two vertices
it flips, it performs a stabilise() to ensure that the all the vertices in the graph are stable. The
appropriate vertices flipped from stabilise() are again looked at as candidates for a operation (b).
This process is continued until there are no more candidate vertices - ie the operation cannot be done
any further. If given opbflips not NULL, then all the flips (including those from stabilise()) are
added to this list.

e void opc (ChromonList *c, List *wlist)
This expects a ready-discovered ChromonList object c, and a list of candidates wlist on which to
perform operation (c). Any vertex that it flips, a local stabilise() is performed, then from the list of
all flipped vertices, it performs an opb (). This ensures that we've returned the graph to the state at the
end of operationb(). Then the list of flipped vertices from opb(), and all cochromatic neighbours are
then added to wlist as possible candidates for operation (c). The relevant chromons are rediscovered
for consistency. This process is continued until there are no more vertices left to look at.

F.3 HST Algorithm
We describe the appropriate functions defined in implementing the HST algorithm.

e ChromonList *hst_algorithm (MonoGraph *g)
Caller function. Given a graph g, it runs HST on the graph and returns a ChromonList object.

e void whitify (MonoGraph *g)
This is an implementation of the initialise_colouring() phase of the algorithm as described in
§3.4. However, it expects that all vertices of g are stable. It completely eliminates ripe vertices by
performing the relevant operations, and then looks at white-balanced vertices. After flipping each white
balanced vertices, it ensures that any ripe vertices created are once again eliminated. As a postcondition,
it ensures that the graph g contains no ripe vertices or white balanced vertices.

e List *get_blacks (MonoGraph *g)
This is an implementation of the black_search() functionality of the HST algorithm. It expects that
all white chromons have size < 2. It returns a list of vertices which are black, 4-balanced, and not
adjacent to each other.

e void deliberate_assignment (MonoGraph *g, List #*blacks)
This is an implementation of the assign_final_colouring() functionality of the HST. It takes in
a list blacks of black, 4-balanced, mutually non-adjacent vertices, and chooses which ones to colour
white and black.

e Node *ripe (Node *n)
This function is used by whitify () to determine whether a vertex is ripe. It returns a K7 neighbour of
n if n is ripe, and NULL otherwise.

e bool wbalanced (Node *n)
Returns true if n is white and balanced, and false otherwise.

e bool circuit (List *chromon)
Given chromon, and ordered list of vertices such that it defines a path or circuit, it returns true if the
chromon is a path, and false otherwise.

e Node *path_rewind (Node *n)
Given a node n which belongs to either a path or circuit, it picks an arbitrary end of a path as the start
and returns that node. If n belongs to a circuit, it returns n.

e bool distance (Node *n, Node *m, Colour c)
Given two vertices n and m, it returns true if there is a path across 2 or 3 vertices of colour ¢ from n to
m. Otherwise, it returns false.
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e void give_direction (Node *start, bool *done)
Given the start of a path or an arbitrary vertex in a circuit start, this gives the path or circuit a
consistent direction. It also expects a done array to record what has already been done.

e void do_assignments (MonoGraph *g, MonoGraph *hl, MonoGraph *hip,
MonoGraph *h2, MonoGraph *h2p,
unsigned int *blacklist, unsigned length blacklength)

This function implements the while loop in the assign_colouring() phase of the HST algorithm as
well as the colouring of white and black vertices. It expects hl and h2, successor graphs implementing
HJ[1] and H|[2] respectively. It also expects the graphs of predecessors - that is the opposite direction
of H[1] and H|[2], as hip, and h2p. The blacklist array is a copy of the list, but it is also used for
mapping forward and reverse from the id of nodes in h1 and h2 to the original graph g. The parameter
blacklength gives the length of blacklist. This is the last functional phase of the HST algorithm.

e unsigned int unplaced_successor (MonoGraph *h, unsigned int u, bool *done)
This expects h directed. It checks whether the neighbour u's neighbour v is not recorded as done. If
we have v done, then h->vertices is returned. Otherwise v is returned. This is often called with the
graph defining predecessors to check for an unplaced predecessor. It does not update done.

F.4 EHST Algorithm

Most of the functions used in EHST are the same as that of HST. There are three functions different and two
functions new.

e ChromonList *ehst_algorithm (MonoGraph *g)
Caller function. Given a graph g, it runs EHST on the graph and returns a ChromonList object.

e void ewhitify (MonoGraph *g)
This is an implementation of the einitialise_colouring() phase of the algorithm as described in
83.5. It looks at ripe vertices and white balanced vertices with equal priority. It is conjectured that it
shares the same postcondition of whitify().

e void edeliberate_assignment (MonoGraph *g, List *blacks)
As before, but is an implementation of the eassign_final_colouring(). Rather than calling do_assignments (),
it calls edo_assignments().

e void edo_assignments (MonoGraph *g, MonoGraph *hl, MonoGraph *hilp,
MonoGraph *h2, MonoGraph *h2p,
unsigned int *blacklist, unsigned length blacklength)

The behaviour is the same as the previous section, but implements the while loop in eassign_final_colouring().
e ChromonlList *minimise_chromons (MonoGraph *g)
This take a graph g that has had edeliberate_assignment() performed as a last step. It builds a

ChromonList, and flips a vertex if would make it belong to a smaller chromon. The postcondition is
that the maximum chromon size is at most as large as from edeliberate_assignment ().

e bool flipcheck (ChromonList *clist, Node *n)
Returns true if flipping n would make it belong to a smaller chromon, false otherwise.
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G Appendix - Results Tables

The following key is used to interpret the data given in the table:

[V| - Number of vertices of graph.

e M. - Average Maximum monochromatic component size.

e A, - Average Average monochromatic component size.

e M. - Maximum Maximum monochromatic component size.

e A, - Maximum Average monochromatic component size.
o A; - Average time.

e M; - Maximum time.

e S - Standard deviation of Maximum monochromatic component size.

e S, - Standard deviation of Average monochromatic component size.

e S; - Standard deviation of time.

|V| ﬁc A70 Mc Ac At Mt SA S]\/I St
20 | 4.200000 | 1.937489 6 | 2.500000 40.000000 1000 | 0.276781 | 0.761052 39.979995
40 | 4.480000 | 1.887496 6 | 2.500000 39.959999 999 | 0.262261 | 0.809938 39.939995
60 | 4.800000 | 1.845866 6 | 2.142857 199.960007 1000 | 0.252011 | 0.867179 89.380107
80 | 5.000000 | 1.858072 6 | 2.222222 359.920013 1000 | 0.254475 | 0.903327 | 119.913330
100 | 5.040000 | 1.789242 6 | 2.083333 479.959991 1000 | 0.238965 | 0.912140 | 138.483223
200 | 5.840000 | 1.835193 9 | 2.083333 679.960022 1000 | 0.248688 | 1.085173 | 164.832051
300 | 5.800000 | 1.767177 8 | 1.898734 1119.880005 2000 | 0.233430 | 1.070327 | 233.114590
400 | 5.920000 | 1.765544 7 | 1.886792 1399.800049 2000 | 0.232934 | 1.089587 | 296.510391
500 | 6.240000 | 1.795206 8 | 1.960784 1919.680054 2999 | 0.239473 | 1.153776 | 391.755039
600 | 6.400000 | 1.779619 8 | 1.886792 2679.479980 3999 | 0.235869 | 1.185243 | 546.791406
700 | 6.360000 | 1.776912 8 | 1.871658 2919.600098 3000 | 0.235112 | 1.175755 | 586.336445
800 | 6.560000 | 1.784419 8 | 1.873536 3479.280029 4999 | 0.236785 | 1.215895 | 707.431484
900 | 6.640000 | 1.785633 9| 1.923077 4039.320068 5000 | 0.237151 | 1.241934 | 814.625312
1000 | 6.360000 | 1.783734 7 | 1.838235 4919.200195 5999 | 0.236594 | 1.171665 | 990.094141
2000 | 6.800000 | 1.780329 8 | 1.828154 | 15957.719727 | 19997 | 0.235783 | 1.263646 | 1859.792656
3000 | 7.040000 | 1.775944 9 | 1.828154 | 34114.718750 | 43994 | 0.234830 | 1.314534 | 2450.545781
4000 | 7.560000 | 1.778671 9| 1.811594 | 69749.476562 | 83988 | 0.235407 | 1.415345 | 2378.513437
5000 | 7.640000 | 1.778071 | 10 | 1.814224 | 129180.437500 | 160976 | 0.235265 | 1.435549 | 2590.210312
6000 | 8.160000 | 1.777822 | 12 | 1.821494 | 201729.406250 | 246962 | 0.235226 | 1.548160 | 1852.613437
7000 | 7.920000 | 1.780321 9 | 1.813472 | 306873.375000 | 363945 | 0.235753 | 1.484857 | 1745.621406
8000 | 7.920000 | 1.777615 | 11 | 1.809136 | 405298.437500 | 477927 | 0.235161 | 1.494523 | 2258.932500
9000 | 7.800000 | 1.779414 | 10 | 1.822600 | 544797.375000 | 629904 | 0.235550 | 1.466424 | 1832.853906
10000 | 8.040000 | 1.775365 9 | 1.804403 | 733288.625000 | 869868 | 0.234667 | 1.510497 | 1725.626094

EF Results
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|V| E A76 M, Ac At M SA SM St
20 | 3.720000 | 1.659394 5 | 2.000000 199.960007 1000 | 0.212482 | 0.647457 89.380107
40 | 3.880000 | 1.565389 51 1.739130 440.000000 1000 | 0.189018 | 0.678822 132.598643
60 | 4.120000 | 1.551593 5 | 1.764706 319.920013 1000 | 0.186152 | 0.726636 | 113.052227
80 | 4.160000 | 1.543603 6 | 1.666667 519.919983 1000 | 0.183846 | 0.739730 144.127744
100 | 4.520000 | 1.526956 7| 1.724138 719.880005 1000 | 0.180011 | 0.809938 | 169.592480
200 | 4.600000 | 1.527965 51 1.639344 1639.599976 2999 | 0.179848 | 0.819756 346.227734
300 | 5.040000 | 1.534089 71 1.595745 2559.679932 3999 | 0.181147 | 0.913893 | 524.427344
400 | 5.320000 | 1.519806 7 | 1.587302 3719.399902 5000 | 0.177852 | 0.969948 | 751.315703
500 | 5.360000 | 1.536096 7| 1.612903 5159.240234 6999 | 0.181637 | 0.974885 | 1045.118984
600 | 5.400000 | 1.531592 7 | 1.578947 6079.160156 7999 | 0.180577 | 0.983056 | 1223.495312
700 | 5.360000 | 1.526067 7| 1.583710 7238.959961 7999 | 0.179259 | 0.974885 | 1455.712656
800 | 5.400000 | 1.515751 7 | 1.581028 9478.839844 11999 | 0.176936 | 0.983056 | 1901.666250
900 | 5.280000 | 1.529187 7 | 1.578947 10758.360352 12998 | 0.179990 | 0.956661 | 2163.639531
1000 | 5.680000 | 1.522046 7 | 1.582278 13397.919922 14998 | 0.178368 | 1.043072 | 582.812305
2000 | 5.880000 | 1.522232 7 1 1.555210 46433.039062 53992 | 0.178349 | 1.082220 | 2122.617500
3000 | 5.960000 | 1.523521 8 | 1.547988 93305.882812 | 111983 | 0.178626 | 1.102724 | 1461.295000
4000 | 6.560000 | 1.521656 8 | 1.540832 177133.156250 218967 | 0.178197 | 1.215895 | 2550.576250
5000 | 6.640000 | 1.527783 8 | 1.552795 | 325510.468750 | 371944 | 0.179605 | 1.232883 | 1571.647813
6000 | 6.480000 | 1.520632 8 | 1.5639251 491845.031250 570913 | 0.177961 | 1.201333 | 2407.787188
7000 | 6.720000 | 1.525447 8 | 1.538462 | 722010.187500 | 855870 | 0.179064 | 1.245793 | 2334.142500
8000 | 6.640000 | 1.524057 8 | 1.536098 953934.812500 | 1155824 | 0.178746 | 1.231584 | 1870.769063
9000 | 6.680000 | 1.521534 8 | 1.535836 | 1279725.500000 | 1469777 | 0.178168 | 1.236770 | 2401.533281
10000 | 6.960000 | 1.520874 8 | 1.535155 | 1693422.625000 | 1993697 | 0.178014 | 1.292440 | 1762.732344
HST Results
|V| T[c A7c Mc Ac At Mt SA S]VI St
20 | 3.280000 | 1.711111 4| 2.222222 199.919998 1000 | 0.226062 | 0.554256 89.362217
40 | 3.600000 | 1.599888 4| 1.818182 359.959991 1000 | 0.197590 | 0.622254 119.926660
60 | 3.640000 | 1.631738 5 | 2.000000 559.919983 1000 | 0.205303 | 0.632456 | 149.570068
80 | 3.720000 | 1.570773 51 1.739130 759.880005 1000 | 0.190321 | 0.644981 174.241230
100 | 3.920000 | 1.590580 41 1.851852 919.840027 2000 | 0.194563 | 0.678822 | 199.875996
200 | 3.960000 | 1.565855 41 1.724138 1999.839966 3000 | 0.188756 | 0.685857 | 407.788203
300 | 4.120000 | 1.565490 5 | 1.639344 3319.439941 4000 | 0.188402 | 0.720000 | 672.693750
400 | 4.240000 | 1.551982 5 | 1.600000 4639.359863 5000 | 0.185217 | 0.746190 932.725937
500 | 4.280000 | 1.571242 5 | 1.677852 6119.080078 6999 | 0.189695 | 0.754718 | 1228.047578
600 | 4.280000 | 1.563941 5| 1.675978 7278.959961 8999 | 0.188042 | 0.754718 | 1461.746875
700 | 4.240000 | 1.562792 5 | 1.605505 8918.519531 9999 | 0.187615 | 0.746190 | 1792.478125
800 | 4.440000 | 1.553313 51 1.626016 11118.200195 11998 | 0.185543 | 0.787909 | 2228.799219
900 | 4.400000 | 1.558792 5 | 1.624549 12798.120117 14998 | 0.186799 | 0.779744 | 2570.746250
1000 | 4.480000 | 1.549198 51 1.612903 15237.679688 16998 | 0.184585 | 0.795990 | 1567.611094
2000 | 4.680000 | 1.554741 5| 1.602564 50312.281250 56991 | 0.185783 | 0.835225 | 2363.610625
3000 | 4.880000 | 1.556777 5 | 1.585624 | 105424.039062 | 124981 | 0.186221 | 0.872697 | 1289.711016
4000 | 4.960000 | 1.557919 5 | 1.581028 199449.718750 231965 | 0.186473 | 0.887243 | 1724.298281
5000 | 4.920000 | 1.556491 5| 1.577287 | 353306.312500 | 387941 | 0.186154 | 0.880000 | 1941.385000
6000 | 5.000000 | 1.554941 6 | 1.573977 547756.812500 620906 | 0.185794 | 0.896214 825.233594
7000 | 4.960000 | 1.560363 5| 1.582278 | 819675.250000 | 956854 | 0.187028 | 0.887243 | 1754.588438
8000 | 5.000000 | 1.559250 6 | 1.582278 | 1073636.750000 | 1233812 | 0.186774 | 0.896214 | 1538.008125
9000 | 5.000000 | 1.560353 6 | 1.577287 | 1452819.250000 | 1662747 | 0.187024 | 0.896214 | 566.850078
10000 | 5.040000 | 1.556098 6 | 1.568381 | 1947343.875000 | 2166671 | 0.186052 | 0.903327 | 1737.400156

EHST (LASHI) Results
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