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History of the problem

In the 1960’s, Kato considered the following abstract evolution
equation

∂tu(t) +A(t)u(t) = f(t), t ∈ [0, T ].

on a Hilbert space H .

This has a unique strict solution u = u(t) if

D(A(t)α) = const

for some 0 < α ≤ 1 and A(t) and f(t) satisfy certain smoothness
conditions.
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Typically A(t) is defined by an associated sesquilinear form

Jt :W ×W → C

where W ⊂H .

Suppose 0 ≤ ω ≤ π/2. Then Jt is ω-sectorial means that

(i) W ⊂H is dense,

(ii) Jt[u, u] ∈ Sω+ = {ζ ∈ C : |arg ζ| ≤ ω} ∪ {0}, and

(iii) W is complete under the norm

‖u‖2W = ‖u‖2 + Re Jt[u, u].
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T : D(T )→H is called ω-accretive if

(i) T is densely-defined and closed,

(ii) 〈Tu, u〉 ∈ Sω+ for u ∈ D(T ), and

(iii) σ(T ) ⊂ Sω+.

A 0-accretive operator is non-negative and self-adjoint.
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Let A(t) : D(A(t))→H be defined as the operator with largest
domain such that

Jt[u, v] = 〈A(t)u, v〉 u ∈ D(A(t)), v ∈ W.

The theorem of Lax-Milgram guarantees that

Jt is ω-sectorial =⇒ A(t) is ω-accretive.

In 1962, Kato showed in [Kato] that for 0 ≤ α < 1/2 and
0 ≤ ω ≤ π/2,

D(A(t)α) = D(A(t)∗α) = D = const, and

‖A(t)αu‖ ' ‖A(t)∗αu‖, u ∈ D. (Kα)

Counter examples were known for α > 1/2 and for α = 1/2 when
ω = π/2.
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Kato asked two questions. For ω < π/2,

(K1) Does (Kα) hold for α = 1/2?

(K2) For the case ω = 0, we know D(
√
A(t)) =W and (K1) is true,

but is
‖∂t
√
A(t)u‖ . ‖u‖

for u ∈ W?

In 1972, McIntosh provided a counter example in [Mc72]
demonstrating that (K1) is false in such generality.

In 1982, McIntosh showed that (K2) also did not hold in general in
[Mc82].
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The Kato square root problem then became the following.

Set

J [u, v] = 〈A∇u,∇v〉 u, v ∈W1,2(Rn),

where A ∈ L∞ is a pointwise matrix multiplication operator satisfying
the following ellipticity condition:

Re J [u, u] ≥ κ‖∇u‖, for some κ > 0.

Under these conditions, is it true that

D(
√

divA∇) = W1,2(Rn)

‖
√

divA∇u‖ ' ‖∇u‖. (K1)

This was answered in the positive in 2002 by Pascal Auscher, Steve
Hofmann, Michael Lacey, Alan McIntosh and Phillipe Tchamitchian
in [AHLMcT].
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Kato square root problem for functions and forms

Let M be a smooth, complete Riemannian manifold with metric g,
Levi-Civita connection ∇, and volume measure µg.

Write divg = −∇∗ in L2.

Let Ω(M) denote the algebra of differential forms over M.

Let d be the exterior derivative as an operator on L2(Ω(M)) and d∗

its adjoint, both of which are nilpotent operators.

The Hodge-Dirac operator is then the self-adjoint operator
D = d +d∗. The Hodge-Laplacian is then D2 = d d∗ + d∗ d.
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Let S = (I,∇).

Assume a ∈ L∞(M) and
A = (Aij) ∈ L∞(M,L(L2(M)⊕ L2(T∗M)).

Consider the following second order differential operator
LA : D(LA) ⊂ L2(M)→ L2(M) defined by:

LAu = aS∗ASu = −adiv(A11∇u)−adiv(A10u)+aA01∇u+aA00u.

The Kato square root problem for functions is then to determine:

D(
√

LA) = W1,2(M) and ‖
√

LAu‖ ' ‖∇u‖+ ‖u‖ = ‖u‖W1,2 for all
u ∈W1,2(M).
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For an invertible A ∈ L∞(L(Ω(M))), we consider perturbing D to
obtain the operator DA = d +A−1d∗A.

The Kato square root problem for forms is then to determine the
following whenever 0 6= β ∈ C:

D(
√

D2
A + |β|2) = D(DA) = D(d) ∩ D(d∗A) and

‖
√

D2
A + |β|2u‖ ' ‖DA u‖+ ‖u‖.

Lashi Bandara Geometry and the Kato problem 10/34



For an invertible A ∈ L∞(L(Ω(M))), we consider perturbing D to
obtain the operator DA = d +A−1d∗A.

The Kato square root problem for forms is then to determine the
following whenever 0 6= β ∈ C:

D(
√

D2
A + |β|2) = D(DA) = D(d) ∩ D(d∗A) and

‖
√

D2
A + |β|2u‖ ' ‖DA u‖+ ‖u‖.

Lashi Bandara Geometry and the Kato problem 10/34



Axelsson (Rosén)-Keith-McIntosh framework

(H1) The operator Γ : D(Γ) ⊂H →H is a closed, densely-defined
and nilpotent operator, by which we mean R(Γ) ⊂ N (Γ),

(H2) B1, B2 ∈ L(H ) and there exist κ1, κ2 > 0 satisfying the
accretivity conditions

Re 〈B1u, u〉 ≥ κ1‖u‖2 and Re 〈B2v, v〉 ≥ κ2‖v‖2,

for u ∈ R(Γ∗) and v ∈ R(Γ), and

(H3) B1B2R(Γ) ⊂ N (Γ) and B2B1R(Γ∗) ⊂ N (Γ∗).

Let us now define ΠB = Γ +B1Γ
∗B2 with domain

D(ΠB) = D(Γ) ∩ D(B1Γ
∗B2).
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Quadratic estimates

To say that ΠB satisfies quadratic estimates means that

ˆ ∞
0
‖tΠB(I + t2Π2

B)−1u‖2 dt
t
' ‖u‖2, (Q)

for all u ∈ R(ΠB).

This implies that

D(
√

Π2
B) = D(ΠB) = D(Γ) ∩ D(Γ∗B2)

‖
√

Π2
Bu‖ ' ‖ΠBu‖ ' ‖Γu‖+ ‖Γ∗B2u‖
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B)−1u‖2 dt
t
' ‖u‖2, (Q)

for all u ∈ R(ΠB).

This implies that

D(
√

Π2
B) = D(ΠB) = D(Γ) ∩ D(Γ∗B2)

‖
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The main theorem on manifolds

Theorem (B.-Mc, 2012)

LetM be a smooth, complete Riemannian manifold with |Ric| ≤ C
and inj(M) ≥ κ > 0. Suppose the following ellipticity condition
holds: there exists κ1, κ2 > 0 such that

Re 〈av, v〉 ≥ κ1‖v‖2

Re 〈ASu, Su〉 ≥ κ2‖u‖2W1,2

for v ∈ L2(M) and u ∈W1,2(M). Then,
D(
√

LA) = D(∇) = W1,2(M) and
‖
√

LAu‖ ' ‖∇u‖+ ‖u‖ = ‖u‖W1,2 for all u ∈W1,2(M).
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Lipschitz estimates

Since we allow the coefficients a and A to be complex, we obtain the
following stability result as a consequence:

Theorem (B.-Mc, 2012)

LetM be a smooth, complete Riemannian manifold with |Ric| ≤ C
and inj(M) ≥ κ > 0. Suppose that there exist κ1, κ2 > 0 such that
Re 〈av, v〉 ≥ κ1‖v‖2 and Re 〈ASu, Su〉 ≥ κ2‖u‖2W1,2 for v ∈ L2(M)

and u ∈W1,2(M). Then for every ηi < κi, whenever ‖ã‖∞ ≤ η1,
‖Ã‖∞ ≤ η2, the estimate

‖
√

LA u−
√

LA+Ã u‖ . (‖ã‖∞ + ‖Ã‖∞)‖u‖W1,2

holds for all u ∈W1,2(M). The implicit constant depends in
particular on A, a and ηi.
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Curvature endomorphism for forms

Let
{
θi
}

be an orthonormal frame at x for Ω1(M) = T∗M.

Denote the components of the curvature tensor in this frame by
Rmijkl. The curvature endomorphism is then the operator

Rω = Rmijkl θ
i ∧ (θj x (θk ∧ (θl x ω)))

for ω ∈ Ωx(M).

This can be seen as an extension of Ricci curvature for forms, since
g(Rω, η) = Ric(ω[, η[) whenever ω, η ∈ Ω1

x(M) and where
[ : T∗M→ TM is the flat isomorphism through the metric g.

The Weitzenböck formula then asserts that D2 = tr12∇2 + R .
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The Weitzenböck formula then asserts that D2 = tr12∇2 + R .

Lashi Bandara Geometry and the Kato problem 15/34



Theorem (B., 2012)

LetM be a smooth, complete Riemannian manifold and let
β ∈ C \ {0}. Suppose there exist η, κ > 0 such that |Ric| ≤ η and
inj(M) ≥ κ. Furthermore, suppose there is a ζ ∈ R satisfying
g(Ru, u) ≥ ζ |u|2 , for u ∈ Ωx(M) and A ∈ L∞(L(Ω(M))) and
κ1 > 0 satisfying

Re 〈Au, u〉 ≥ κ1‖u‖2.

Then, D(
√

D2
A + |β|2) = D(DA) = D(d) ∩ D(d∗A) and

‖
√

D2
A + |β|2u‖ ' ‖DA u‖+ ‖u‖.
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The Kato problem for functions are captured in the AKM framework
on letting H = L2(M)⊕ (L2(M)⊕ L2(T∗M)) and letting

Γ =

(
0 0
S 0

)
, Γ∗ =

(
0 S∗

0 0

)
, B1 =

(
a 0
0 0

)
, B2 =

(
0 0
0 A

)
.

For the case of forms, the setup takes the form,
H = L2(Ω(M))⊕ L2(Ω(M)) and

Γ =

(
d 0
β −d

)
, Γ∗ =

(
δ β
0 −δ

)
, B1 =

(
A−1 0

0 A−1

)
, B2 =

(
A 0
0 A

)
.
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Geometry and harmonic analysis

Harmonic analytic methods are used to prove quadratic estimates (Q).

The idea is to reduce the quadratic estimate (Q) to a Carleson
measure estimate. This is achieved via a local T (b) argument.

Geometry enters the picture precisely in the harmonic analysis. We
need to perform harmonic analysis on vector fields, not just functions.

One can show that this is not artificial - the Kato problem on
functions immediately provides a solution to the dual problem on
vector fields.
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Elements of the proofs

Similar in structure to the proof of [AKMc] which is inspired from the
proof in [AHLMcT].

• A dyadic decomposition of the space

• A notion of averaging (in an integral sense)

• Poincaré inequality - on both functions and vector fields

• Control of ∇2 in terms of ∆.
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Rough metrics

Definition (Rough metric)

Let g be a (2, 0) symmetric tensor field with measurable coefficients
and that for each x ∈M, there is some chart (U,ψ) near x and a
constant C ≥ 1 such that

C−1 |u|ψ∗δ(y) ≤ |u|g(y) ≤ C |u|ψ∗δ(y) ,

for almost-every y ∈ U and where δ is the Euclidean metric in ψ(U).
Then we say that g is a rough metric, and such a chart (U,ψ) is said
to satisfy the local comparability condition.
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Metric perturbations

Definition

We say that two rough metrics g and g̃ are C-close if

C−1 |u|g̃(x) ≤ |u|g(x) ≤ C |u|g̃(x)

for almost-every x ∈M where C ≥ 1. Two such metrics are said to
be C-close everywhere if this inequality holds for every x ∈M.

We also say that g and g̃ are close if there exists some C ≥ 1 for
which they are C-close.

For two continuous metrics, C-close and C-close everywhere coincide.
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Proposition

Let g and g̃ be two rough metrics that are C-close. Then, there exists
B ∈ Γ(T∗M⊗ TM) such that it is symmetric, almost-everywhere
positive and invertible, and

g̃x(B(x)u, v) = gx(u, v)

for almost-every x ∈M. Furthermore, for almost-every x ∈M,

C−2 |u|g̃(x) ≤ |B(x)u|g̃(x) ≤ C
2 |u|g̃(x) ,

and the same inequality with g̃ and g interchanged. If g̃ ∈ Ck and
g ∈ Cl (with k, l ≥ 0), then the properties of B are valid for all
x ∈M and B ∈ Cmin{k,l}(T∗M⊗ TM).
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The measure µg(x) = θ(x) dµg̃(x), where θ(x) =
√

detB(x).

Consequently,

(i) whenever p ∈ [1,∞), Lp(T (r,s)M, g) = Lp(T (r,s)M, g̃) with

C
−
(
r+s+ n

2p

)
‖u‖p,g̃ ≤ ‖u‖p,g ≤ Cr+s+

n
2p ‖u‖p,g̃,

(ii) for p =∞, L∞(T (r,s)M, g) = L∞(T (r,s)M, g̃) with

C−(r+s)‖u‖∞,g̃ ≤ ‖u‖∞,g ≤ Cr+s‖u‖∞,g̃,
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(iii) the Sobolev spaces W1,p(M, g) = W1,p(M, g̃) and
W1,p

0 (M, g) = W1,p
0 (M, g̃) with

C
−
(
1+ n

2p

)
‖u‖W1,p,g̃ ≤ ‖u‖W1,p,g ≤ C

1+ n
2p ‖u‖W1,p,g̃,

(iv) the Sobolev spaces Wd,p(M, g) = Wd,p(M, g̃) and

Wd,p
0 (M, g) = Wd,p

0 (M, g̃) with

C
−
(
n+ n

2p

)
‖u‖Wd,p,g̃ ≤ ‖u‖Wd,p,g ≤ C

n+ n
2p ‖u‖Wd,p,g̃,

(v) the divergence operators satisfy divD,g = θ−1 divD,g̃ θB and
divN,g = θ−1 divN,g̃ θB.
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Case of functions

Theorem (B, 2014)

Let g̃ be a smooth, complete metric and suppose that there exists
κ > 0 and η > 0 such that

(i) inj(M, g̃) ≥ κ and,

(ii) |Ric(g̃)| ≤ η.
Then, for any rough metric g that is close, the Kato square root
problem for functions has a solution on (M, g).
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Case of forms

Theorem (B, 2014)

Let g be a rough metric close to g̃, a smooth, complete metric, and
suppose that:

(i) there exists κ > 0 such that inj(M, g̃) ≥ κ,
(ii) there exists η > 0 such that |Ric(g̃)| ≤ η, and
(iii) there exists ζ ∈ R such that g̃(Rω, ω) ≥ ζ |ω|2g̃ .
Then, the Kato square root problem for forms has a solution on
(M, g).
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Compact manifolds with rough metrics

Theorem (B, 2014)

LetM be a smooth, compact manifold and g a rough metric. Then,
the Kato square root problem (on functions and forms, respectively)
has a solution.
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Cones and induced metrics

Let Cnr,h be the n-cone of height h > 0 and radius r > 0.

The cone
can be realised as the image of the graph function

Fr,h(x) =

(
x, h

(
1− |x|

r

))
.

Let U be an open set in Rn such that Br(0) ⊂ U . Then, define
Gr,h : U → Rn+1 as the map Fr,h whenever x ∈ Br(0) and (x, 0)
otherwise.

Then we obtain that the map Gr,h satisfies

|x− y| ≤ |Gr,h(x)−Gr,h(y)| ≤
√

1 + (hr−1)2 |x− y| .
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Proposition

Let γ : I → U be a smooth curve such that γ(0) 6∈ {0} ∪ ∂Br(0).
Then, ∣∣γ′(0)

∣∣ ≤ ∣∣(Gr,h ◦ γ)′(0)
∣∣ ≤√1 +

h2

r2
∣∣γ′(0)

∣∣ .
Moreover, for u ∈ TxU , x 6∈ {0} ∪ ∂Br(0) (and in particular for
almost-every x),

|u|δ ≤ |u|g ≤
√

1 +
h2

r2
|u|δ ,

where δ is the usual inner product on U induced by Rn.

A particular consequence is that the metrics g = G∗r,hδRn+1 and δRn

are
√

1 + (hr−1)2-close on U .
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Lemma

Given ε > 0, there exists two points x, x′ and distinct minimising
smooth geodesics γ1,ε and γ2,ε between x and x′ of length ε.
Furthermore, there are two constants C1,r,h,ε, C2,r,h,ε > 0 depending
on h, r and ε such that the geodesics γ1,ε and γ2,ε are contained in
Gr,h(Aε) where Aε is the Euclidean annulus

{x ∈ Br(0) : C1,r,h,ε < |x| < C2,r,h,ε} .
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Theorem (B., 2014)

For any C > 1, there exists a smooth metric g which is C-close to the
Euclidean metric δ for which inj(R2, g) = 0. Furthermore, the Kato
square root problem for functions can be solved for (R2, g) under the.
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In higher dimensions, we obtain a similar result since the
2-dimensional cone can be realised as a totally geodesic submanifold.

Theorem (B., 2014)

LetM be a smooth manifold of dimension at least 2 and g a
continuous metric. Given C > 1, and a point x0 ∈M, there exists a
rough metric h such that:

(i) it induces a length structure and the metric dg preserves the
topology ofM,

(ii) it is smooth everywhere except x0,

(iii) the geodesics through x0 are Lipschitz,

(iv) it is C-close to g,

(v) inj(M\ {x0} ,h) = 0.
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