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History of the problem

In the 1960's, Kato considered the following abstract evolution

equation
owu(t) + A(t)u(t) = f(t), tel0,T].

on a Hilbert space 7.

This has a unique strict solution u = u(t) if
D(A(t)*) = const

for some 0 < o < 1 and A(¢t) and f(t) satisfy certain smoothness
conditions.
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Typically A(t) is defined by an associated sesquilinear form
J:WxW —C

where W C J7.

Suppose 0 < w < 7/2. Then J; is w-sectorial means that

(i) W C A is dense,
(i) Jelu,u] € Sy ={¢ € C: |arg(| < w}U{0}, and

(iii) W is complete under the norm

lullfy = l[ul® + Re Je[u, u].
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T :D(T) — S is called w-accretive if
(i) T is densely-defined and closed,
(i) (Tu,u) € Syt for u € D(T), and
(iii) o(T) C S

A 0-accretive operator is non-negative and self-adjoint.
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Let A(t) : D(A(t)) — S be defined as the operator with largest
domain such that

Ji[u, v] = (A(t)u,v) u € D(A(t)), v e W.

The theorem of Lax-Milgram guarantees that
Jy is w-sectorial = A(t) is w-accretive.

In 1962, Kato showed in [Kato] that for 0 < o < 1/2 and
0<w< /2,

D(A(t)*) = D(A(t)*™) = D = const, and
[A®®) ull = [|A(#)* ull, weD. (Ka)

Counter examples were known for & > 1/2 and for & = 1/2 when
w=1/2.
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Kato asked two questions. For w < 7/2,

(K1) Does (K4) hold for o = 1/27
(K2) For the case w = 0, we know D(y/A(t)) =W and (K1) is true,

but is
10/ A)ul| < lull

for u € W?

In 1972, Mclntosh provided a counter example in [Mc72]
demonstrating that (K1) is false in such generality.

In 1982, Mclntosh showed that (K2) also did not hold in general in
[Mc82].
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The Kato square root problem then became the following. Set
J[u,v] = (AVu, Vo) u,v € WH(R™),

where A € L is a pointwise matrix multiplication operator satisfying
the following ellipticity condition:

Re J[u,u] > k||Vul|, for some x > 0.

Under these conditions, is it true that

D(y/div AV) = WH(R™)
|lvdiv AVu|| ~ ||[Vul. (K1)

This was answered in the positive in 2002 by Pascal Auscher, Steve
Hofmann, Michael Lacey, Alan Mclntosh and Phillipe Tchamitchian
in [AHLMCcT].
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Kato square root problem for functions and forms

Let M be a smooth, complete Riemannian manifold with metric g,
Levi-Civita connection V, and volume measure .

Write divy = —V* in L2
Let (M) denote the algebra of differential forms over M.

Let d be the exterior derivative as an operator on L?(Q2(M)) and d*
its adjoint, both of which are nilpotent operators.

The Hodge-Dirac operator is then the self-adjoint operator
D = d +d*. The Hodge-Laplacian is then D? = dd* + d* d.
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Let S = (I, V).

Assume a € L*°(M) and
A= (A”) (S LOO(M,ﬁ(Lz(M) @ LQ(T*M)).

Consider the following second order differential operator
L4 :D(La) C L2(M) — L2(M) defined by:

Lau = aS*ASu = —adiv(A11Vu) —adiv(Ajgu) + aAg Vu+aAgou.
The Kato square root problem for functions is then to determine:

D(VLa) = WH2(M) and ||[vLau| =~ |Vul| + ||Ju| = ||u|lwr.2 for all
u € WH2(M).
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For an invertible A € L>°(L(Q2(M))), we consider perturbing D to
obtain the operator D4 = d +A~'d*A.

The Kato square root problem for forms is then to determine the
following whenever 0 # 3 € C:

D(1/D4 +|B*) = D(D4) = D(d) N D(d*A) and

2
1/ D% + B Pull = [ Daull + [lul.
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Axelsson (Rosén)-Keith-McIntosh framework

(H1) The operator I' : D(T") C S — . is a closed, densely-defined
and nilpotent operator, by which we mean R(T") C N (T),

(H2) By, Bz € L(A) and there exist k1, k2 > 0 satisfying the
accretivity conditions

Re (Biu,u) > r1|jul?* and Re (Byv,v) > kol|v]?,
for u € R(I'*) and v € R(T"), and
(H3) BiBoR(T) C N(T) and BoBiR(T'*) © N(T*).

Let us now define IIg = I + B1I"™* By with domain
D(I1p) = D(I') N D(B1I*By).
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Quadratic estimates

To say that IIp satisfies quadratic estimates means that

i ) s @
for all u € R(Tp).
This implies that

D(\/T1%) = D(I1g) = D(T) N D(I" By)

I\/Iull = |[Tpul ~ [Cull + [ T* Byu|
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The main theorem on manifolds

Theorem (B.-Mc, 2012)

Let M be a smooth, complete Riemannian manifold with |Ric| < C
and inj(M) > k > 0. Suppose the following ellipticity condition
holds: there exists k1, ko > 0 such that

Re (av,v)
Re (ASwu, Su)

ol

AV,

pia ||y 2

for v € L*(M) and u € WH?(M). Then,
D(VLa) = D(V) = W'*(M) and
IVEaul| = [Vl + ||ul| = [lullwe for all uw € WH2(M).
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Lipschitz estimates

Since we allow the coefficients a and A to be complex, we obtain the
following stability result as a consequence:

Theorem (B.-Mc, 2012)

Let M be a smooth, complete Riemannian manifold with |Ric| < C
and inj(M) > k > 0. Suppose that there exist k1, ke > 0 such that
Re (av,v) > k1|[v]|* and Re (ASu, Su) > ko ull3y.2 for v € L2 (M)

and u € WH2(M). Then for every n; < k;, whenever ||alloo < 71,
| Alloe < 12, the estimate

IWVELaw— /Ly gul S (lalloo + [ Allso) w2

holds for all u € W12(M). The implicit constant depends in
particular on A, a and n;.
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Curvature endomorphism for forms

Let {6°} be an orthonormal frame at z for Q'(M) = T* M.

Denote the components of the curvature tensor in this frame by
Rmyjg;. The curvature endomorphism is then the operator

Rw = Rmgjz 0" A (67 L (6% A (6" L w)))
for w € Q, (M).
This can be seen as an extension of Ricci curvature for forms, since
g(Rw,7n) = Ric(w’,n’) whenever w,n € (M) and where
p: T*M — TM is the flat isomorphism through the metric g.

The Weitzenbock formula then asserts that D? = trjs V2 + R..
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Theorem (B., 2012)

Let M be a smooth, complete Riemannian manifold and let

B € C\ {0}. Suppose there exist 0,k > 0 such that |Ric| < n and
inj(M) > k. Furthermore, suppose there is a ( € R satisfying
g(Ru,u) > C|ul®, foru € 2, (M) and A € L=(L(Q(M))) and
k1 > 0 satisfying

Re (Au,u) > iy ull.

Then, D(1/D% +|B|>) = D(D4) = D(d) N D(d*A) and
1/ D% + 1B ull = [ Daull + flu].
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The Kato problem for functions are captured in the AKM framework
on letting 77 = L%(M) @ (L}(M) @ L2(T*M)) and letting

00\ . (0 S (a0 (0 0
=5 0) =0 0) =) w8,

For the case of forms, the setup takes the form,
T = Lz(Q(M)) @ LZ(Q(M)) and

_(d 0 . (6 B _[(A-1 0 (A 0
=5 S)r=l S e (00 )= 0)
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Geometry and harmonic analysis

Harmonic analytic methods are used to prove quadratic estimates (Q).

The idea is to reduce the quadratic estimate (Q) to a Carleson
measure estimate. This is achieved via a local T'(b) argument.

Geometry enters the picture precisely in the harmonic analysis. We
need to perform harmonic analysis on vector fields, not just functions.

One can show that this is not artificial - the Kato problem on

functions immediately provides a solution to the dual problem on
vector fields.
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Elements of the proofs

Similar in structure to the proof of [AKMc] which is inspired from the
proof in [AHLMcT].

e A dyadic decomposition of the space
e A notion of averaging (in an integral sense)

e Poincaré inequality - on both functions and vector fields
e Control of V2 in terms of A.
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Rough metrics

Definition (Rough metric)

Let g be a (2,0) symmetric tensor field with measurable coefficients
and that for each = € M, there is some chart (U, ) near = and a
constant C' > 1 such that

—1
¢ |“|w*5(y) = |u|g(y) = C|u|¢*5(y)’

for almost-every y € U and where ¢ is the Euclidean metric in ¢(U).
Then we say that g is a rough metric, and such a chart (U, ) is said
to satisfy the local comparability condition.
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Metric perturbations

Definition
We say that two rough metrics g and g are C-close if

C™ ulg(ey < luly(ey < Clulg

for almost-every x € M where C' > 1. Two such metrics are said to
be C-close everywhere if this inequality holds for every x € M.

We also say that g and g are close if there exists some C' > 1 for
which they are C-close.

For two continuous metrics, C-close and C-close everywhere coincide.
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Proposition

Let g and g be two rough metrics that are C'-close. Then, there exists
B € T'(T*M ® TM) such that it is symmetric, almost-everywhere
positive and invertible, and

82(B(2)u, v) = ge(u,v)
for almost-every x € M. Furthermore, for almost-every x € M,
O [ulyy) < IB(@)ulypy < C*Julygyy -

and the same inequality with § and g interchanged. If § € C* and
g € C! (with k,1 > 0), then the properties of B are valid for all
z € M and B € Cin{blH(T* M @ TM).
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The measure pg(z) = 0(x) dug(x), where 8(x) = /det B(x).

Consequently,
(i) whenever p € [1,00), LP(T™) M, g) = LP(T (") M, &) with

8 Jullpz < lullpe < O ulpa,

(i) for p = oo, L®(TIM, g) = L°(T") M, g) with

O™ Julloog < [ulloog < O |ulloo g
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(iii) the Sobolev spaces W1P(M,g) = WHP(M, g) and
WP (M, g) = WyP (M, §) with

(142 1+
08 fullying < [ullwing < O 5 ullwing,

(iv) the Sobolev spaces W3P(M, g) = WIP(M, g) and
WP (M, g) = W (M, &) with

_ n 2
) o g < lullwar g < €5 ullywar g

(v) the divergence operators satisfy divp , = 06~ divp ; 6B and
diVN7g =01 diVNg 0B.
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Case of functions

Theorem (B, 2014)

Let g be a smooth, complete metric and suppose that there exists
k> 0 and n > 0 such that

(i) inj(M,g) > Kk and,

(i) [Ric(g)] <n.
Then, for any rough metric g that is close, the Kato square root
problem for functions has a solution on (M, g).
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Case of forms

Theorem (B, 2014)

Let g be a rough metric close to g, a smooth, complete metric, and
suppose that:

(i) there exists k > 0 such that inj(M, g) > &,
(ii) there exists n > 0 such that |Ric(g)| < n, and
(i) there exists ¢ € R such that g(Rw,w) > C\w@.

Then, the Kato square root problem for forms has a solution on

(M, g).
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Compact manifolds with rough metrics

Theorem (B, 2014)

Let M be a smooth, compact manifold and g a rough metric. Then,

the Kato square root problem (on functions and forms, respectively)
has a solution.
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Cones and induced metrics

Let C';, be the n-cone of height A > 0 and radius r > 0. The cone
can be realised as the image of the graph function

o= (e (1- 1)),

Let U be an open set in R™ such that B,(0) C U. Then, define
Grp U — R" as the map F).j, whenever z € B,(0) and (z,0)
otherwise.

Then we obtain that the map G, satisfies

|z —y| < |Grp(x) = Grp(y)| < V14 (hr=1)2 |z —yl.
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Proposition

Let v : I — U be a smooth curve such that v(0) ¢ {0} U 9dB,(0).
Then,

12
VO] < [(Grn o) (0)] <4/1+ 5 [Y(0)].
Moreover, for u € T,U, x ¢ {0} U9B,(0) (and in particular for

almost-every x),

h2
Juls < fulg < \/1+ 75 [uls

where § is the usual inner product on U induced by R".

A particular consequence is that the metrics g = G ; dgn+1 and dgn

are \/1+ (hr—1)2-close on U.
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Lemma

Given € > 0, there exists two points x,x' and distinct minimising
smooth geodesics 1 . and v . between x and x’ of length .
Furthermore, there are two constants C ;. p, -, Co,pne > 0 depending
on h, r and € such that the geodesics 1. and 2 . are contained in
Gy 1(A:) where A, is the Euclidean annulus

{«T S Br(o) : Cl,r,h,s < |5L" < C2,r,h,s} .
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Theorem (B., 2014)

For any C' > 1, there exists a smooth metric g which is C-close to the
Euclidean metric & for which inj(R?, g) = 0. Furthermore, the Kato
square root problem for functions can be solved for (R?,g) under the.
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In higher dimensions, we obtain a similar result since the
2-dimensional cone can be realised as a totally geodesic submanifold.

Theorem (B., 2014)

Let M be a smooth manifold of dimension at least 2 and g a
continuous metric. Given C > 1, and a point xo € M, there exists a
rough metric h such that:

(i) it induces a length structure and the metric dy preserves the
topology of M,

it is smooth everywhere except xy,

the geodesics through xq are Lipschitz,
it is C-close to g,

inj(M\ {0} ,h) = 0.
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