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History of the problem

In the 1960’s, Kato considered the following abstract evolution equation

du

dt
+A(t)u = f(t), t ∈ [0, T ].

on a Hilbert space H .

This has a unique strict solution u = u(t) if

D(A(t)α) = const

for some 0 < α ≤ 1 and A(t) and f(t) satisfy certain smoothness
conditions.
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Typically A(t) is defined by an associated sesquilinear form

Jt :W ×W → C

where W ⊂H .

Suppose 0 ≤ ω ≤ π/2. Then Jt is ω-sectorial means that

(i) W ⊂H is dense,

(ii) Jt[u, u] ∈ Sω+ = {ζ ∈ C : |arg ζ| ≤ ω} ∪ {0}, and

(iii) W is complete under the norm

‖u‖2W = ‖u‖+ Re J [u, u].
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T : D(T )→H is called ω-accretive if

(i) T is densely-defined and closed,

(ii) 〈Tu, u〉 ∈ Sω+ for u ∈ D(T ), and

(iii) σ (T ) ⊂ Sω+.

A 0-accretive operator is non-negative and self-adjoint.
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Let A(t) : D(A(t))→H be defined as the operator with largest domain
such that

Jt[u, v] = 〈A(t)u, v〉 u ∈ D(A(t)), v ∈ W.

The theorem of Lax-Milgram guarantees that

Jt is ω-sectorial =⇒ A(t) is ω-accretive.

In 1962, Kato showed in [Kato] that for 0 ≤ α < 1/2 and 0 ≤ ω ≤ π/2,

D(A(t)α) = D(A(t)∗α) = D = const, and

‖A(t)αu‖ ' ‖A(t)∗αu‖ , u ∈ D. (Kα)

Counter examples were known for α > 1/2 and for α = 1/2 when
ω = π/2.
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Kato asked two questions. For ω < π/2,

(K1) Does (Kα) hold for α = 1/2?

(K2) For the case ω = 0, we know D(
√
A(t)) =W and (K1) is true, but is∥∥∥∥ ddt√A(t)u

∥∥∥∥ . ‖u‖

for u ∈ W?

In 1972, McIntosh provided a counter example in [Mc72] demonstrating
that (K1) is false in such generality.

In 1982, McIntosh showed that (K2) also did not hold in general in [Mc82].
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The Kato square root problem then became the following. Set

J [u, v] = 〈A∇u,∇v〉 u, v ∈ H1(Rn),

where A ∈ L∞ is a pointwise matrix multiplication operator satisfying the
following ellipticity condition:

Re J [u, u] ≥ κ ‖∇u‖ , for some κ > 0.

Under these conditions, is it true that

D(
√

divA∇) = H1(Rn)∥∥∥√divA∇u
∥∥∥ ' ‖∇u‖ (K1)

This was answered in the positive in 2002 by Auscher, Hofmann, Lacey,
McIntosh and Tchamitchian in [AHLMcT].
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Setup

Let M be a smooth, complete Riemannian manifold with metric g,
Levi-Civita connection ∇, and volume measure dµ.

Write div = −∇∗ in L2 and let S = (I,∇).

Consider the following uniformly elliptic second order differential operator
LA : D(LA) ⊂ L2(M)→ L2(M) defined by

LAu = aS∗ASu = −adiv(A11∇u)− adiv(A10u) + aA01∇u+ aA00u.

That is, we assume a and A = (Aij) are L∞ multiplication operators and
that there exist κ1, κ2 > 0 such that

Re 〈av, v〉 ≥ κ1 ‖v‖2 , v ∈ L2

Re 〈ASu, Su〉 ≥ κ2(‖u‖2 + ‖∇u‖2), u ∈ H1
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The problem

The Kato square root problem on manifolds is to determine when the
following holds:

{
D(
√

LA) = H1(M)∥∥√LAu
∥∥ ' ‖∇u‖+ ‖u‖ = ‖u‖H1 , u ∈ H1(M)
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The main theorem

Theorem (B.-Mc)

Let M be a smooth, complete Riemannian manifold with |Ric| ≤ C and
inj(M) ≥ κ > 0. Suppose there exist κ1, κ2 > 0 such that

Re 〈av, v〉 ≥ κ1 ‖v‖2

Re 〈ASu, Su〉 ≥ κ2 ‖u‖2H1

for v ∈ L2(M) and u ∈ H1(M). Then, D(
√

LA) = D(∇) = H1(M) and
‖
√

LAu‖ ' ‖∇u‖+ ‖u‖ = ‖u‖H1 for all u ∈ H1(M).
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Stability

Theorem (B.-Mc)

Let M be a smooth, complete Riemannian manifold with |Ric| ≤ C and
inj(M) ≥ κ > 0. Suppose that there exist κ1, κ2 > 0 such that

Re 〈av, v〉 ≥ κ1 ‖v‖2

Re 〈ASu, Su〉 ≥ κ2 ‖u‖2H1

for v ∈ L2(M) and u ∈ H1(M). Then for every ηi < κi, whenever
‖ã‖∞ ≤ η1, ‖Ã‖∞ ≤ η2, the estimate∥∥∥√LA u−

√
LA+Ã u

∥∥∥ . (‖ã‖∞ + ‖Ã‖∞) ‖u‖H1

holds for all u ∈ H1(M). The implicit constant depends in particular on
A, a and ηi.
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A more general problem

We can consider the Kato square root problem on vector bundles by
replacing M with V, a smooth, complex vector bundle of rank N over M
with metric h and connection ∇.

These theorems are obtained as special cases of corresponding theorems
on vector bundles.

We use the adaptation of the first order systems approach in [AKMc],
which captures the Kato problem (and some other results of harmonic
analysis) in terms of perturbations of Dirac type operators.
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Axelsson (Rosén)-Keith-McIntosh framework

(H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert
space H ,

(H2) Suppose that B1, B2 ∈ L(H ) such that here exist κ1, κ2 > 0
satisfying

Re 〈B1u, u〉 ≥ κ1 ‖u‖2 and Re 〈B2v, v〉 ≥ κ2 ‖v‖2

for u ∈ R(Γ∗) and v ∈ R(Γ),

(H3) The operators B1, B2 satisfy B1B2R(Γ) ⊂ N (Γ) and
B2B1R(Γ∗) ⊂ N (Γ∗).

Let Γ∗B = B1Γ∗B2, ΠB = Γ + Γ∗B and Π = Γ + Γ∗.
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Growth restrictions

We say M has exponential volume growth if there exists c ≥ 1, κ, λ ≥ 0
such that

0 < µ(B(x, tr)) ≤ ctκeλtrµ(B(x, r)) <∞ (Eloc)

for all t ≥ 1, r > 0 and x ∈M.

For instance, if Ric ≥ ηg, for η ∈ R, then (Eloc) is satisfied.
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Generalised bounded geometry

We want to set H = L2(V), but we need to assume more structure in V.

Definition (Generalised Bounded Geometry)

Suppose there exists ρ > 0, C ≥ 1 such that for each x ∈M, there exists
a trivialisation ψ : B(x, ρ)× CN → π−1

V (B(x, ρ)) satisfying

C−1I ≤ h ≤ CI

in the basis
{
ei = ψ(x, êi)

}
, where

{
êi
}

is the standard basis for CN .
Then, we say that V has generalised bounded geometry or GBG. We call ρ
the GBG radius.
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Further assumptions

(H4) The bundle V has GBG, H = L2(V), and M grows at most
exponentially.

(H5) The operators B1, B2 are matrix valued pointwise multiplication
operators. That is, Bi ∈ L∞(M,L(V)) by which we mean that
Bi(x) ∈ L(π−1

V (x)) for every x ∈M and there is a CBi > 0 so that
‖Bi(x)‖∞ ≤ C for almost every x ∈M.

(H6) The operator Γ is a first order differential operator. That is, there
exists a CΓ > 0 such that whenever η ∈ C∞c (M), we have that
ηD(Γ) ⊂ D(Γ) and Mηu(x) = [Γ, η(x)]u(x) is a multiplication
operator satisfying

|Mηu(x)| ≤ CΓ |∇η|T∗M |u(x)|

for all u ∈ D(Γ) and almost all x ∈M.
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Dyadic cubes

Since we assume exponential growth of M, the work of Christ in [Christ]
and subsequently of Morris in [Morris] allows us to perform a dyadic
decomposition of the manifold below a fixed “scale.”

In particular, we are able to choose arbitrarily large J ∈ N so that for every
j ≥ J, Qj is an almost everywhere decomposition of M by open sets.

If l > j then for every cube Q ∈ Ql, there is a unique cube Q̂ ∈ Qj such
that Q ⊂ Q̂.

Each such cube has a centre xQ .

Each cube Q ∈ Qj also has a diameter of at most C1δ
j , where C1 > 0

and δ ∈ (0, 1) are fixed, uniform quantities.
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GBG coordinates

Since we assume the bundle satisfies GBG, we recall the uniform ρ > 0
from this criterion.

Choose J ∈ N such that C1δ
J ≤ ρ

5 . We call tS = δJ the scale.

Call the system of trivialisations
C =

{
ψ : B(xQ , ρ)× CN → π−1

V (B(xQ , ρ)) s.t. Q ∈ QJ
}

the GBG
coordinates.
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GBG coordinates (cont.)

Call the set of a.e. trivialisations
CJ =

{
ϕ̃Q = ψ|Q : Q × CN → π−1

V (Q) s.t. Q ∈ QJ
}

the dyadic GBG

coordinates.

For any cube Q, the unique cube Q̂ ∈ QJ satisfying Q ⊂ Q̂ we call the
GBG cube of Q.

The GBG coordinate system of Q is then
ψ : B(x

Q̂
, ρ)× CN → π−1

V (B(x
Q̂
, ρ)).
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Machinery for the harmonic analysis

For t ≤ tS, we write Qt = Qj whenever δj+1 < t ≤ δj .
For j > J and Q ∈ Qj and u = uie

i ∈ L1
loc(V) in the GBG

coordinates associated to Q̂. Define, the cube integral

ˆ
Q
u =

(ˆ
Q
ui

)
ei

inside B(x
Q̂
, ρ).

The cube average is then defined as uQ(y) =
ffl
Q u, for y ∈ B(x

Q̂
, ρ)

and 0 otherwise.

Let Atu(x) = uQ(x) whenever x ∈ Q ∈ Qt.

For each w ∈ CN , let γt(x)w = (ΘB
t ω)(x) where ω(x) = w in the

GBG coordinates of each Q.
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Cancellation assumption

(H7) There exists c > 0 such that for all t ≤ tS and Q ∈ Qt,∣∣∣∣ˆ
Q

Γu dµ

∣∣∣∣ ≤ cµ(Q)
1
2 ‖u‖ and

∣∣∣∣ˆ
Q

Γ∗v dµ

∣∣∣∣ ≤ cµ(Q)
1
2 ‖v‖

for all u ∈ D(Γ), v ∈ D(Γ∗) satisfying spt u, spt v ⊂ Q.
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Dyadic Poincaré assumption

(H8) There exists CP , CC , c, c̃ > 0 and an operator
Ξ : D(Ξ) ⊂ L2(V)→ L2(N ), where N is a normed bundle over M
with norm |· |N and D(Π) ∩R(Π) ⊂ D(Ξ) satisfying for all
u ∈ D(Π) ∩R(Π),

-1 (Dyadic Poincaré )

ˆ
B

|u− uQ |2 dµ ≤ CP (1 + rκeλcrt)(rt)2
ˆ
c̃B

(
|Ξu|2N + |u|2

)
dµ

for all balls B = B(xQ , rt) with r ≥ C1/δ where Q ∈ Qt with t ≤ tS,
and

-2 (Coercivity)

‖Ξu‖2L2(N ) + ‖u‖2L2(V) ≤ CC ‖Πu‖
2
L2(V) .
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Kato square root type estimate

Proposition

Suppose M is a smooth, complete Riemannian manifold and V is a
smooth vector bundle over M. If (H1)-(H8) are satisfied, then

(i) D(Γ) ∩ D(Γ∗B) = D(ΠB) = D(
√

Π2
B), and

(ii) ‖Γu‖+ ‖ΓBu‖ ' ‖ΠBu‖ ' ‖
√

Π2
Bu‖, for all u ∈ D(ΠB).
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Kato square root problem on vector bundles

Theorem (B.-Mc.)

Suppose M grows at most exponentially and satisfies a local
Poincaré inequality on functions. Further, suppose that both V and T∗M
have GBG, and

(i) the metric h and ∇ are compatible,

(ii) there exists C > 0 such that in each GBG chart we have that∣∣∇ej∣∣ , ∣∣∇dxi∣∣ , ∣∣∂khij∣∣ , ∣∣∂kgij∣∣ ≤ C a.e.,

(iii) there exist κ1, κ2 > 0 such that Re 〈au, u〉 ≥ κ1 ‖u‖2 and
Re 〈ASv, Sv〉 ≥ κ2 ‖v‖2H1 for all u ∈ L2(V) and v ∈ H1(V), and

(iv) we have that D(∆) ⊂ H2(V), and there exist C ′ > 0 such that∥∥∇2u
∥∥ ≤ C ′ ‖(I + ∆)u‖ whenever u ∈ D(∆).

Then, D(
√

LA) = D(∇) = H1(V) with ‖
√

LAu‖ ' ‖∇u‖+ ‖u‖ = ‖u‖H1

for all u ∈ H1(V).
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Set H = L2(V)⊕ (L2(V)⊕ L2(T∗M⊗V)).

Define

Γ =

[
0 0
S 0

]
, B1 =

[
a 0
0 0

]
, and B2 =

[
0 0
0 A

]
.

Then,

Γ∗ =

[
0 S∗

0 0

]
and Π2

B =

[
LA 0
0 ∗

]
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Kato square root problem for tensors

Theorem (B.-Mc.)

Let M be a smooth, complete Riemannian manifold with |Ric| ≤ C and
inj(M) ≥ κ > 0. Suppose that there exist C ′ > 0 such that∥∥∇2u

∥∥ ≤ C ′ ‖(I + ∆)u‖ whenever u ∈ D(∆) ⊂ H2(T (p,q)M). Then,

D(
√

LA) = D(∇) = H1(T (p,q)M) and ‖
√

LAu‖ ' ‖∇u‖+ ‖u‖ = ‖u‖H1

for all u ∈ H1(T (p,q)M).
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Ricci, injectivity bounds and GBG

Proposition

Suppose there is a κ, η > 0 such that inj(M) ≥ κ and |Ric| ≤ η. Then for
A > 1 and α ∈ (0, 1), there exists rH(n,A, α, κ, η) > 0 such that for each
x ∈M, there is a coordinate system corresponding to B(x, rH) satisfying:

(i) A−1δij ≤ gij ≤ Aδij as bilinear forms and,

(ii)
∑
l

rH sup
y∈B(x,rH)

|∂lgij(y)|

+
∑
l

r1+α
H sup

y 6=z∈B(x,rH)

|∂lgij(z)− ∂lgij(y)|
d(y, z)α

≤ A− 1.

See the observation following Theorem 1.2 in [Hebey].
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The proposition guarantees GBG coordinates for V = T (p,q)M.

The proposition gives
∣∣∇ej∣∣ , ∣∣∇dxi∣∣ , ∣∣∂khij∣∣ , ∣∣∂kgij∣∣ ≤ C in each

GBG coordinate chart
{
ej
}

for T (p,q)M.

The Ricci bounds guarantee exponential volume growth and the local
Poincaré inequality.

By invoking Theorem 5 (on vector bundles), we obtain Theorem 6 (finite
rank tensors).

Theorem 1 follows from Theorem 6 since
∥∥∇2u

∥∥ . ‖(I + ∆)u‖ is a
consequence of the Bochner-Lichnerowicz-Weitzenböck identity, Ricci
curvature bounds and uniform lower bounds on injectivity radius.

See Proposition 3.3 in [Hebey].
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