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Lashi Bandara The continuity of a flow tangent to the Ricci flow 1/30



Motivation: the flow of Gigli-Mantegazza

Let M be a compact manifold with a smooth metric g. Let ∆g be its
Laplacian (on functions) and ρ

g
· (· , · ) ∈ C∞(R+ ×M×M) denote

the heat kernel.

Fix a point x ∈M and a time t > 0, and two tangent vectors
u, v ∈ TxM. Let ϕt,x,v ∈ L2(M) with

´
M ϕt,x,v dµg = 0 be the

solution to the PDE:

− divg,y ρ
g
t (x, y)∇ϕt,x,v(y) = dx(ρgt (x, y))(v), (GMC)

Gigli and Mantegazza in [GM] define gt(x) on tangent vectors
u, v ∈ TxM by the expression:

gt(x)(u, v) =

ˆ
M

g(y)(∇ϕt,x,u(y),∇ϕt,x,v(y)) ρ
g
t (x, y) dµg(y).

(GM)
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This expression can indeed be checked to define an inner product on
TxM.

Moreover, Gigli and Mantegazza show that:

∂tgt(γ̇(s), γ̇(s))| t=0 = −2 Ricg(γ̇(s), γ̇(s)),

for almost-every s along g-geodesics γ. That is, gt is tangential to the
Ricci flow in this weak sense.

The defining equation (GMC) can be “lifted” to a distributional
equation in Wasserstein space. Using the induced heat flow, we
obtain a time evolving family of distance metrics dt starting with the
initial metric d0 = dg, the induced distance from g. Indeed, dt is
induced from the metrics gt defined by (GM).
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In fact, the fact that (GMC) can be given meaning in Wasserstein
space means exactly that the flow of distance metrics dt can be
defined for an RCD-space (X ,d, µ) (a measure metric space with a
notion of Ricci curvature bounded from below and with a Hilbertian
Sobolev space).

In particular, this allows us to flow spaces containing singularities.
Given that there are few tools to consider regularity questions in the
RCD setting, we consider this problem on a smooth manifold M but
with low-regularity metrics.
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Rough metrics

Assume that M is a manifold (possibly noncompact).

Definition (Rough metric)

Let g̃ be a (2, 0) symmetric tensor field with measurable coefficients
and that for each x ∈M, there is some chart (U,ψ) near x and a
constant C ≥ 1 such that

C−1 |u|ψ∗δ(y) ≤ |u|g̃(y) ≤ C |u|ψ∗δ(y) ,

for almost-every y ∈ U and where δ is the Euclidean metric in ψ(U).
Then we say that g̃ is a rough metric, and such a chart (U,ψ) is said
to satisfy the local comparability condition.
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Induced measure

Define µg̃ for a rough metric g̃ by writing

dµg̃(x) =
√

det g̃(x) dL (x)

inside charts satisfying the local comparability condition and then
patching them together via a partition of unity.

This measure is Borel-regular and finite on compact sets. It is
unknown whether they are generally Radon. However, if M is
compact, then it is.

Moreover, Lp theory exists (trivial) and ∇ on C∞ ∩ L2 is a closable,
densely-defined operator which gives Sobolev spaces W1,2(M) and
W1,2

0 (M).
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Metric perturbations

Definition

We say that two rough metrics g and g̃ are C-close if

C−1 |u|g̃(x) ≤ |u|g(x) ≤ C |u|g̃(x)

for almost-every x ∈M where C ≥ 1. Two such metrics are said to
be C-close everywhere if this inequality holds for every x ∈M.

Note: on a compact manifold, there is always a C-close smooth
metric g given a rough metric g̃.
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Proposition

Let g and g̃ be two rough metrics that are C-close. Then, there exists
B ∈ Γ(T∗M⊗ TM) such that it is symmetric, almost-everywhere
positive and invertible, and

g̃x(B(x)u, v) = gx(u, v)

for almost-every x ∈M. Furthermore, for almost-every x ∈M,

C−2 |u|g̃(x) ≤ |B(x)u|g̃(x) ≤ C
2 |u|g̃(x) ,

and the same inequality with g̃ and g interchanged. If g̃ ∈ Ck and
g ∈ Cl (with k, l ≥ 0), then the properties of B are valid for all
x ∈M and B ∈ Cmin{k,l}(T∗M⊗ TM).
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The measure µg(x) = θ(x) dµg̃(x), where θ(x) =
√

detB(x).

Consequently,

(i) whenever p ∈ [1,∞), Lp(T (r,s)M, g) = Lp(T (r,s)M, g̃) with

C
−
(
r+s+ n

2p

)
‖u‖p,g̃ ≤ ‖u‖p,g ≤ Cr+s+

n
2p ‖u‖p,g̃,

(ii) for p =∞, L∞(T (r,s)M, g) = L∞(T (r,s)M, g̃) with

C−(r+s)‖u‖∞,g̃ ≤ ‖u‖∞,g ≤ Cr+s‖u‖∞,g̃,
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(iii) the Sobolev spaces W1,p(M, g) = W1,p(M, g̃) and
W1,p

0 (M, g) = W1,p
0 (M, g̃) with

C
−
(
1+ n

2p

)
‖u‖W1,p,g̃ ≤ ‖u‖W1,p,g ≤ C

1+ n
2p ‖u‖W1,p,g̃,

(v) the divergence operators satisfy divD,g = θ−1 divD,g̃ θB and
divN,g = θ−1 divN,g̃ θB.

Note: Rough metrics are natural geometric invariances of the Kato
square root problem. See [B2].
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Assume now that M is compact.

Let g be a rough metric and g̃ a
C-close smooth metric to g for some C ≥ 1.

It makes sense to consider (GMC) in this context, provided we have
the existence of a sufficiently good heat kernel.

Solving (GMC) is equivalent to solving

− divg̃,y ρ
g
t (x, y)Bθ∇ϕt,x,v = θdx(ρgt (x, y))(v), (GMC’)

where g(Bu, v) = g̃(u, v).

Concern: regularity of the metric

x 7→ gt(x)(u, v) = 〈ρgt (x, · )∇ϕt,x,u,∇ϕt,x,v〉L2(g) .
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Theorem (B., Lakzian, Munn ([BLM], 2015))

Let M be a smooth, compact manifold and g a rough metric. Let
∅ 6= N ⊂M be an open set.

(i) If the the heat kernel (x, y) 7→ ρ
g
t (x, y) ∈ C0,1(M2) and

improves to (x, y) 7→ ρ
g
t (x, y) ∈ Ck(N 2) where k ≥ 2. Then, for

t > 0, gt is a Riemannian metric on N of regularity Ck−2,1.

(ii) If the heat kernel (x, y) 7→ ρ
g
t (x, y) ∈ C1(M2) and

(x, y) 7→ ρ
g
t (x, y) ∈ Ck(N 2) where k ≥ 1. Then, for t > 0, gt is

a Riemannian metric on N of regularity Ck−1.
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Standing question: What happens if we only assume that
(x, y) 7→ ρ

g
t (x, y) ∈ C1(N 2) (i.e., no C0,1 or C1 assumptions on

global regularity).

Is it true then that x 7→ gt(x) ∈ C0?

Theorem (B. ([B], 2015))

Let M be a smooth, compact manifold, and ∅ 6= N ⊂M, an open
set. Suppose that g is a rough metric and that ρ

g
t ∈ C1(N 2). Then,

gt as defined by (GM) exists on N and it is continuous.
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The equation (GMC) is a specific case of pointwise linear problems of
the form:

Lxux = ηx (PE)

for suitable source data ηx ∈ L2(M) and where Lx = −divAx∇ is a
family of divergence form operators.

Theorem (B. ([B], 2015))

Let M be a smooth manifold and g a smooth metric. At x ∈M
suppose that x 7→ Ax are real, symmetric, elliptic, bounded
measurable coefficients that are L∞-continuous at x, and that
x 7→ ηx is L2-continuous at x. If x 7→ ux solves (PE) at x with´
M ηx dµg = 0, then x 7→ ux is L2-continuous at x.
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Representation of solutions to the PDE

The equation (PE) can be further reduced to studying elliptic
problems of the form

LAu = −divgA∇u = f, (E)

for suitable source data f ∈ L2(M), where the coefficients A are
symmetric, bounded, measurable and for which there exists a κ > 0
satisfying 〈Au, u〉 ≥ κ‖u‖2.

By the operator theory of self-adjoint operators, we obtain that
L2(M) = N (LA)⊕⊥ R(LA).
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Moreover, N (LA) = N (∇).

Since (M, g) is smooth and compact,
there is a Poincaré inequality, and since A are bounded below,

R = R(LA) = R(
√

LA), where

R =

{
u ∈ L2(M) :

ˆ
M
u dµg = 0

}
.

Also, the embedding E : W1,2(M)→ L2(M) is compact, which
implies that the spectrum of LA is discrete. The Poincaré inequality
implies a spectral gap between the zero and the first-nonzero
eigenvalues.

Then, for f ∈ R, u = L−1A f is a solution to (E) satisfying´
M u dµg = 0.
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Back to the pointwise elliptic linear equation

Suppose that 〈Axu, u〉 ≥ κx‖u‖2, for u ∈ L2(T∗M).

Let Tx =
√

Lx =
√
−divAx∇, and let ux, uy ∈ L2(M) such that´

M ux dµg =
´
M uy dµg = 0.

Then,
‖L−1x ux − L−1y uy‖ = ‖T−1x vx − T−1y vy‖

where vx = T−1x ux and vy = T−1y uy. To prove L2 continuity, it
suffices to show that

‖T−1x vx − T−1y vy‖ . ‖Ax −Ay‖∞‖vx‖+ ‖vx − vy‖.
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Also,

‖T−1x vx − T−1y vy‖ ≤ ‖(T−1x − T−1y )vx‖+ ‖T−1y (vx − vy)‖
≤ ‖(T−1x − T−1y )vx‖+ ‖(T−1y − T−1x )(vx − vy)‖

+ ‖T−1x (vx − vy)‖.

So, for u ∈ L2(M) with
´
M u dµg = 0,

‖T−1x u− T−1y u‖ = ‖T−1x TyT
−1
y u− T−1x TxT

−1
y u‖

= ‖T−1x (Ty − Tx)T−1y u‖ . ‖(Ty − Tx)T−1y u‖

Thus, it suffices to show

‖
√

Lxu−
√

Lyu‖ . ‖Ax −Ay‖∞‖∇u‖.

Such an estimate follows from holomorphic dependency of the
functional calculus if we are able to prove a homogeneous Kato
square root estimate.
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Axelsson (Rosén)-Keith-McIntosh framework

(H1) The operator Γ : D(Γ) ⊂H →H is a closed, densely-defined
and nilpotent operator, by which we mean R(Γ) ⊂ N (Γ),

(H2) B1, B2 ∈ L(H ) and there exist κ1, κ2 > 0 satisfying the
accretivity conditions

Re 〈B1u, u〉 ≥ κ1‖u‖2 and Re 〈B2v, v〉 ≥ κ2‖v‖2,

for u ∈ R(Γ∗) and v ∈ R(Γ), and

(H3) B1B2R(Γ) ⊂ N (Γ) and B2B1R(Γ∗) ⊂ N (Γ∗).

Let us now define ΠB = Γ +B1Γ
∗B2 with domain

D(ΠB) = D(Γ) ∩ D(B1Γ
∗B2).

ΠB is an ω-bisectorial operator with ω ∈ [0, π/2).
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Quadratic estimates

To say that ΠB satisfies quadratic estimates means that

ˆ ∞
0
‖tΠB(I + t2Π2

B)−1u‖2 dt
t
' ‖u‖2, (Q)

for all u ∈ R(ΠB).

This implies that

D(
√

Π2
B) = D(ΠB) = D(Γ) ∩ D(Γ∗B2)

‖
√

Π2
Bu‖ ' ‖ΠBu‖ ' ‖Γu‖+ ‖Γ∗B2u‖
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More importantly, for coefficients A1, A2 ∈ L(H ) satisfying

(i) ‖Ai‖∞ ≤ ηi < κi,

(ii) A1A2R(Γ), B1A2R(Γ), A1B2R(Γ) ⊂ N (Γ), and

(iii) A2A1R(Γ∗), B2A1R(Γ∗), A2B1R(Γ∗) ⊂ N (Γ∗),

we obtain that for an appropriately chosen µ < π/2, and for all
bounded holomorphic functions f in an open bisector containing the
closed ω-bisector,

‖f(ΠB)− f(ΠB+A)‖ . (‖A1‖∞ + ‖A2‖∞)‖f‖∞. (Hol)

This framework and connections to the Kato square root problem can
be found in their paper [AKMc]. This is a first-order reformulation
Kato square root problem resolved by Auscher, Hofmann, Lacey,
McIntosh, and Tchamitchian in [AHLMcT].
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The Kato square root problem on manifolds

Let H = L2(M)⊕ L2(M)⊕ L2(T∗M), and set S = (I,∇)

Set

Γ =

(
0 0
s 0

)
, and

(
0 S∗

0 0

)
.

B1 =

(
a 0
0 0

)
, and B2 =

(
0 0
0 A

)
for a ∈ L∞(M) and A ∈ L∞((M× C)⊕ T∗M).
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Theorem (B., McIntosh ([BMc], 2012))

Let (M, g) be a smooth, complete Riemannian manifold with
|Ric| ≤ C and inj(M) ≥ κ > 0. Suppose that the following ellipticity
condition holds: there exist κ1, κ2 > 0 such that Re 〈au, u〉 ≥ κ1‖u‖2
and

Re(〈A11∇v,∇v〉+〈A10v,∇v〉+〈A01∇v, v〉+〈A00v, v〉) ≥ κ2‖v‖2W1,2

for all u ∈ L2(M) and v ∈W1,2(M). Let
DAu = −a divA11∇u− adivA10u+ aA01∇u+ aA00u. Then, the
quadratic estimates (Q) are satisfied, D(

√
DA) = D(∇) = W1,2(M)

with ‖
√
DAu‖ ' ‖∇u‖+ ‖u‖ = ‖u‖W1,2 for all u ∈W1,2(M), and

‖
√
DAu−

√
DBu‖ . ‖A−B‖∞‖u‖W1,2 ,

whenever b, B are coefficients that satisfy accretivity assumptions
with ηi < κi
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• Every smooth compact Riemannian manifold (M, g) satisfies the
geometric assumptions: it is complete, |Ric| ≤ C, and there exists
κ > 0 such that inj(M, g) ≥ κ.

• We want LA = DA, but if we take A10, A10 and A00 to be 0, we
lose accretivity.

• The norm in the Lipschitz perturbation estimate is a W1,2 norm,
but we need L2 norms.

• The estimate of central importance here is the following coercivity
estimate:

‖u‖ . ‖Πu‖,

for u ∈ D(Π) ∩R(Π). This is almost trivial for the inhomogeneous
problem.
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The homogeneous Kato square root problem on compact
manifolds

Let H = L2(M)⊕ L2(T∗M).

Set

Γ =

(
0 0
∇ 0

)
, and

(
0 −div
0 0

)
.

B1 =

(
a 0
0 0

)
, and B2 =

(
0 0
0 A

)
for a ∈ L∞(M) and A ∈ L∞(T∗M).
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By self-adjointness for Π and, if the coefficients satisfy (H1)-(H3) by
bi-sectoriality,

H = N (Π)⊕⊥ R(Π) = N (ΠB)⊕R(ΠB).

Thus, we have that L2(M) = N (∇)⊕⊥ R(div) and
L2(T∗M) = N (div)⊕⊥ R(∇).

Moreover,

R(div) =

{
u ∈ L2(M) :

ˆ
M
u dµg = 0

}
= R.
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Now, let u ∈ R(Π) ∩ D(Π). So u = (u1, u2), and

‖Πu‖ = ‖∇u1‖+ ‖ div u2‖.

Poincaré inequality then gives us that ‖∇u1‖ ≥ C‖u1‖, since
u1 ∈ R(div).

Now, u2 = ∇v2, for some v2 ∈ D(Π). So,

‖ div u2‖ = ‖∆v2‖ = ‖
√

∆
√

∆v2‖ ≥ C‖
√

∆v2‖
= C‖∇v2‖ = C‖u2‖.

That is,
‖Πu‖ ≥ C‖u‖.
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Theorem (B., ([B], 2015))

On a compact manifold M with a smooth metric g, the operator ΠB

admits a bounded functional calculus. In particular,
D(
√
bdivB∇) = W1,2(M) and ‖

√
bdivB∇u‖ ' ‖∇u‖. Moreover,

whenever ‖b̃‖∞ < η1 and ‖B̃‖∞ < η2, where ηi < κi, we have the
following Lipschitz estimate

‖
√
bdivB∇u−

√
(b+ b̃) div(B + B̃)∇u‖ . (‖b̃‖∞ + ‖B̃‖∞)‖∇u‖

whenever u ∈W1,2(M). The implicit constant depends on b, B and
ηi.
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Corollary

Fix x ∈M and u ∈W1,2(M). If ‖Ax −Ay‖ ≤ ζ < κx, then for
u ∈W1,2(M),

‖
√

Lxu−
√

Lyu‖ . ‖Ax −Ay‖∞‖∇u‖.

The implicit constant depends on ζ and Ax.

Corollary

Fix x ∈M and suppose that ‖Ax −Ay‖ ≤ ζ < κx. Then,

‖L−1x ηx − L−1y ηy‖ . ‖Ax −Ay‖∞‖ηx‖+ ‖ηx − ηy‖,

whenever ηx, ηy ∈ L2(M) satisfies
´
M ηx dµg =

´
M ηy dµg = 0. The

implicit constant depends on ζ, κx, and Ax.
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