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Manifolds and C-close metrics

Let M and N be two smooth Spin manifolds, and g a smooth metric
on M and h a C0,1 metric on N .

We assume there exists ζ :M→N , a C1,1 diffeomorphism. This
induces a fibrewise unitary map U(x) : (TM, g)→ (TN ,h) given by

U = ζ∗[(ζ∗)
∗
gζ∗]

1
2 . This has regularity C0,1.

We say that g ∼ h if there exists C ≥ 1 satisfying: for all x ∈M and
u ∈ TxM,

C−1 |u|g(x) ≤ |ζ∗u|h(ζ(x)) ≤ C |u|g(x) .

The minimal such constant is then CL = inf {C ≥ 1 : g ∼ h}. Then
ρM (g, ζ∗h) = log(CL) is a distance metric.

Throughout, we assume that g ∼ h.
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Spin manifolds and the Dirac operator

By /∆M and /∆N , denote the complex spinor bundles corresponding
to the minimal complex irreducible representation.

Each bundle is
equipped with an inner product 〈· , · 〉∗g and 〈· , · 〉∗h. The connection
defined by

∇/eα =
1

2

∑
b<a

ωa
b ⊗ (eb · ea · /eα),

where /eα is an orthonormal spin frame and ωa
b = wacb e

b is the
connection 1-form, is compatible and is a module derivation. The
Atiyah-Singer Spin Dirac operator is then defined by

/Dψ = ej · ∇ejψ

for ψ ∈ C∞.
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Compatibility and pullback operators

Inside a contractible open set Ω corresponding to a frame, the map U
induces a fibrewise unitary map /UΩ : /∆ Ω→ /∆ ζ(Ω) (there are two
such choices).

If this lifts to a global map /U : /∆M→ /∆N , we say that /∆M and
/∆N are compatible. It is readily checked that /U is C0,1.

Under the map /U, the Dirac operator /Dh pulls back to an operator
/U
−1 /Dh /U that is similar to a self-adjoint operator in L2( /∆M).

Such a global map /U always exists since we can pullback the Spin
structure on M to a compatible structure on N .

Lashi Bandara Riesz continuity of the Dirac operator 4/32



Compatibility and pullback operators

Inside a contractible open set Ω corresponding to a frame, the map U
induces a fibrewise unitary map /UΩ : /∆ Ω→ /∆ ζ(Ω) (there are two
such choices).

If this lifts to a global map /U : /∆M→ /∆N , we say that /∆M and
/∆N are compatible. It is readily checked that /U is C0,1.

Under the map /U, the Dirac operator /Dh pulls back to an operator
/U
−1 /Dh /U that is similar to a self-adjoint operator in L2( /∆M).

Such a global map /U always exists since we can pullback the Spin
structure on M to a compatible structure on N .

Lashi Bandara Riesz continuity of the Dirac operator 4/32



Compatibility and pullback operators

Inside a contractible open set Ω corresponding to a frame, the map U
induces a fibrewise unitary map /UΩ : /∆ Ω→ /∆ ζ(Ω) (there are two
such choices).

If this lifts to a global map /U : /∆M→ /∆N , we say that /∆M and
/∆N are compatible. It is readily checked that /U is C0,1.

Under the map /U, the Dirac operator /Dh pulls back to an operator
/U
−1 /Dh /U that is similar to a self-adjoint operator in L2( /∆M).

Such a global map /U always exists since we can pullback the Spin
structure on M to a compatible structure on N .

Lashi Bandara Riesz continuity of the Dirac operator 4/32



Compatibility and pullback operators

Inside a contractible open set Ω corresponding to a frame, the map U
induces a fibrewise unitary map /UΩ : /∆ Ω→ /∆ ζ(Ω) (there are two
such choices).

If this lifts to a global map /U : /∆M→ /∆N , we say that /∆M and
/∆N are compatible. It is readily checked that /U is C0,1.

Under the map /U, the Dirac operator /Dh pulls back to an operator
/U
−1 /Dh /U that is similar to a self-adjoint operator in L2( /∆M).

Such a global map /U always exists since we can pullback the Spin
structure on M to a compatible structure on N .

Lashi Bandara Riesz continuity of the Dirac operator 4/32



Main Theorem

Theorem

Let M be a smooth Spin manifold with smooth, complete metric g
with Levi-Civita connection ∇g, let N be a smooth Spin manifold
with a C0,1 metric h, and ζ :M→N a C1,1-diffeomorphism with
ρM (g, ζ∗h) ≤ 1. We assume that the spin bundles /∆M and /∆N are
compatible. Moreover, suppose that the following hold:

(i) there exists κ > 0 such that inj(M, g) ≥ κ,

(ii) there exists CR > 0 such that |Ricg| ≤ CR and |∇gRicg| ≤ CR,

(iii) there exists Ch > 0 such that |∇g(ζ∗h)| ≤ Ch almost-everywhere.
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Theorem (cont.)

Then, we have the perturbation estimate∥∥∥∥∥∥ /Dg√
1 + /D

2
g

−
/U
−1 /Dh /U√

1 + (/U
−1 /Dh /U)2

∥∥∥∥∥∥
L2→L2

. ρM (g, ζ∗h),

where the implicit constant depends on dimM and the constants
appearing in (i)-(iii).

Motivations come from connections to the spectral flow as outlined
by Lesch in [L].
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Generalised bounded geometry

Let πV : (V, h)→M be a hermitian vector bundle of dimension N .

We say that (V,h) satisfies generalised bounded geometry if there
exists a uniform ρ > 0 and C ≥ 1 such that for each x ∈M, there is
a continuous local trivialisation ψx : Bρ(x)× CN → π−1

V (Bρ(x))
satisfying:

C−1 |u|CN ≤ |ψx(y)u|h(y) ≤ C |u|CN

for u ∈ CN and y ∈ Bρ(x).

The value ρ is called the GBG radius and in application, the GBG
trivialisations have higher regularity.
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Exponential growth and local Poincaré inequality

We say that (M, g, µ) has exponential volume growth if there exists
cE ≥ 1, κ, c > 0 such that

0 < µ(B(x, tr)) ≤ ctκecEtrµ(B(x, r)) <∞, (Eloc)

for every t ≥ 1, r > 0 and x ∈M.

The manifold M satisfies a local Poincaré inequality if there exists
cP ≥ 1 such that for all f ∈W1,2(M),

‖f − fB‖L2(B) ≤ cP rad(B)‖f‖W1,2(B) (Ploc)

for all balls B in M such that rad(B) ≤ 1.
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First order differential operators on V

We say that an operator D : C∞(V)→ L∞loc(V) is a first-order
differential operator if inside each frame

{
ei
}

for V and {vj} for TM
near x, there exist coefficients αjkl and terms ωpq such that

Du = (αjkl ∇vjuk + uiω
i
l) e

l,

where u = uie
i ∈ C∞(V).

The coefficients ωil are not necessarily smooth. In fact, typically, these
coefficients are simply L∞loc.

We consider two essentially self-adjoint first-order differential
operators D and D̃ on C∞c (V), and with slight abuse of notation we
use this notation for their self-adjoint extensions.

Lashi Bandara Riesz continuity of the Dirac operator 9/32



First order differential operators on V

We say that an operator D : C∞(V)→ L∞loc(V) is a first-order
differential operator if inside each frame

{
ei
}

for V and {vj} for TM
near x, there exist coefficients αjkl and terms ωpq such that

Du = (αjkl ∇vjuk + uiω
i
l) e

l,

where u = uie
i ∈ C∞(V).

The coefficients ωil are not necessarily smooth. In fact, typically, these
coefficients are simply L∞loc.

We consider two essentially self-adjoint first-order differential
operators D and D̃ on C∞c (V), and with slight abuse of notation we
use this notation for their self-adjoint extensions.

Lashi Bandara Riesz continuity of the Dirac operator 9/32



First order differential operators on V

We say that an operator D : C∞(V)→ L∞loc(V) is a first-order
differential operator if inside each frame

{
ei
}

for V and {vj} for TM
near x, there exist coefficients αjkl and terms ωpq such that

Du = (αjkl ∇vjuk + uiω
i
l) e

l,

where u = uie
i ∈ C∞(V).

The coefficients ωil are not necessarily smooth. In fact, typically, these
coefficients are simply L∞loc.

We consider two essentially self-adjoint first-order differential
operators D and D̃ on C∞c (V), and with slight abuse of notation we
use this notation for their self-adjoint extensions.

Lashi Bandara Riesz continuity of the Dirac operator 9/32



The framework/hypothesis

(A1) M and V are finite dimensional, quantified by dimM <∞ and
dimV <∞,

(A2) (M, g) has exponential volume growth quantified by c <∞,
cE <∞ and κ <∞ in (Eloc),

(A3) A local Poincaré inequality (Ploc) holds on M with constant
cP <∞,

(A4) T∗M has C0,1 GBG frames νj quantified by ρT∗M > 0 and
CT∗M <∞, with regularity |∇νj | < CG,T∗M with CG,T∗M <∞
almost-everywhere,

(A5) V has C0,1 GBG frames ej quantified by ρV > 0 and CV <∞,
with regularity |∇ej | < CG,V with CG,V <∞ almost-everywhere,
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(A3) A local Poincaré inequality (Ploc) holds on M with constant
cP <∞,

(A4) T∗M has C0,1 GBG frames νj quantified by ρT∗M > 0 and
CT∗M <∞, with regularity |∇νj | < CG,T∗M with CG,T∗M <∞
almost-everywhere,

(A5) V has C0,1 GBG frames ej quantified by ρV > 0 and CV <∞,
with regularity |∇ej | < CG,V with CG,V <∞ almost-everywhere,

Lashi Bandara Riesz continuity of the Dirac operator 10/32



The framework/hypothesis

(A1) M and V are finite dimensional, quantified by dimM <∞ and
dimV <∞,

(A2) (M, g) has exponential volume growth quantified by c <∞,
cE <∞ and κ <∞ in (Eloc),
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(A6) D is a first-order PDO with L∞ coefficients. In particular, [D, η] is
a pointwise multiplication operator on almost-every fibre Vx, and
there exists cD > 0 such that

|[D, η]u(x)| ≤ cD Lip η(x) |u(x)|

for almost-every x ∈M, every bounded Lipschitz function η, and
where Lip η(x) is the pointwise Lipschitz constant.

(A7) D satisfies |Dej | ≤ CD,V with CD,V <∞ almost-everywhere inside
each GBG frame {ej},
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(A8) D and D̃ both have domains W1,2(V) with C ≥ 1 the smallest
constants satisfying

C−1‖u‖D ≤ ‖u‖W1,2 ≤ C‖u‖D and

C−1‖u‖D̃ ≤ ‖u‖W1,2 ≤ C‖u‖D̃.

(A9) D satisfies the Riesz-Weitzenböck condition

‖∇2u‖ ≤ cW (‖D2u‖+ ‖u‖)

with cW <∞.

The implicit constants in our perturbation estimates will be allowed
to depend on C(M,V,D, D̃) which is the maximum of the constants
appearing in (A1)-(A9).
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The general theorem

Theorem

Let (M, g) be a smooth Riemannian manifold with g that is C0,1,
complete, and satisfying (Eloc) and (Ploc). Let (V,h,∇) be a smooth
vector bundle with C0,1 metric h and connection ∇ that are
compatible almost-everywhere.

Let D, D̃ be self-adjoint operators on L2(V) and assume the
hypotheses (A1)-(A9) on M, V, D and D̃. Let

A1 ∈ L∞(L(T∗M⊗V,V)),

A2 ∈ L∞(W1,2(V),D(div)),

A3 ∈ L∞(L(V)),

and let ‖A‖∞ = ‖A1‖∞ + ‖A2‖∞ + ‖A3‖∞.
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Assume that

D̃ψ = Dψ +A1∇ψ + divA2ψ +A3ψ,

holds in a distributional sense for ψ ∈W1,2(V).

Then, for each ω ∈ (0, π/2) and σ ∈ (0,∞], whenever
f ∈ Hol∞(So

ω,σ), we have the perturbation estimate

‖f(D̃)− f(D)‖L2(V)→L2(V) . ‖f‖L∞(Sω,σ)‖A‖∞,

where the implicit constant depends on C(M,V,D, D̃).

Note, So
ω,σ :=

{
x+ iy : y2 < tan2 ωx2 + σ2

}
.
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Obtaining the main theorem from the general

/• Note that g is smooth, h is locally Lipschitz, and set V = /∆M to
a spin bundle of (M, g) along with a compatible spin bundle /∆N
on (N ,h). Let D = /Dg and D̃ = /U

−1 /Dh /U.

/• The bound Ric ≥ −CRg yields (A2) and (A3) by the
Bishop-Gromov volume comparison theorem.

/• The bounds |Ric| ≤ CR and inj(M, g) ≥ κ yields (A4), (A5), and
(A7) via the existence of harmonic coordinates with a uniform
radius ρ > 0 and with |∂kgij | . 1.

/• The ellipticity D(/Dg) = W1,2( /∆M) can be seen immediately from
the fact that Ric ≥ −CRg which implies RS ≥ −CR and by
invoking the Bochner formula. For the other operator, we need the
following Lemma.
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Lemma

Under the geometric assumptions: inj(M, g) ≥ κ, |Ric| ≤ CR , there
exists a sequence of points xi and a smooth partition of unity {ηi}
uniformly locally finite and subordinate to {B(xi, rH)} satisfying∑

i

∣∣∇jηi∣∣) ≤ CH for j = 0, ..., 2. Moreover, there exists M > 0 such
that 1 ≤M

∑
i η

2
i .

/• This partition of unity and uniform sized trivialisations can be
pushed over via the C1,1 diffeomorphism to N with similar
gradient bounds to get D(/Dh) = W1,2( /∆N ) and (A8).

/• The Riesz-Weitzenböck condition (A9) is obtained by a similar
localisation along with the addition assumption |∇gRic| ≤ CR
which yields |∂l∂kgij | . 1 inside harmonic balls.
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The operator decomposition

/• The decomposition D−D′ = AΩ
1∇ + divAΩ

2 +AΩ
3 inside a local

trivialisation Ω is a matter of calculation and does not require
curvature assumptions.

/• To obtain a global decomposition, we require a Lipschitz partition
of unity {ηj} subordinate to local trivialisations on balls {Bj}
satisfying: there exists C1, C2, C3 > 0 such that

(i) |∇ej,i| ≤ C1,
(ii)

∣∣∂ej,k g̃(ej,i, ej,l)
∣∣ ≤ C2, where g̃ = ζ∗h, and

(iii) |∇ηj | ≤ C3

for all i, k, l = 1, . . . , n = dim(M) and all j = 1, . . . .

/• It is easy to see our previous Lemma and gradient bound
|∇g(ζ∗h)| . 1 imply (i)-(iii).
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Reduction to quadratic estimates

For t > 0, let us define operators

Pt =
1

I + t2D2
, P̃t =

1

I + t2D̃2
, Qt = tDPt, and Q̃t = tD̃P̃t.

The fact that D and D̃ are self adjoint gives

ˆ ∞
0
‖Q̃tu‖2

dt

t
≤ 1

2
‖u‖2 and

ˆ ∞
0
‖Qtu‖2

dt

t
≤ 1

2
‖u‖2,

and also

sup
t
‖Pt‖, sup

t
‖P̃t‖, sup

t
‖Qt‖, sup

t
‖Q̃t‖ ≤

1

2
.

Lashi Bandara Riesz continuity of the Dirac operator 18/32



Reduction to quadratic estimates

For t > 0, let us define operators

Pt =
1

I + t2D2
, P̃t =

1

I + t2D̃2
, Qt = tDPt, and Q̃t = tD̃P̃t.

The fact that D and D̃ are self adjoint gives

ˆ ∞
0
‖Q̃tu‖2

dt

t
≤ 1

2
‖u‖2 and

ˆ ∞
0
‖Qtu‖2

dt

t
≤ 1

2
‖u‖2,

and also

sup
t
‖Pt‖, sup

t
‖P̃t‖, sup

t
‖Qt‖, sup

t
‖Q̃t‖ ≤

1

2
.

Lashi Bandara Riesz continuity of the Dirac operator 18/32



Proposition

Suppose that

ˆ 1

0
‖Q̃tA1∇(ıI + D)−1Ptf‖2

dt

t
≤ C1‖A‖2∞‖f‖2, and

ˆ 1

0
‖tP̃t divA2Ptf‖2

dt

t
≤ C2‖A‖2∞‖f‖2

for all u ∈ L2(V). Then, for ω ∈ (0, π/2) and σ ∈ (0,∞), whenever
f ∈ Hol∞(So

ω,σ), we obtain that

‖f(D̃)− f(D)‖ . ‖f‖∞‖A‖∞

where the implicit constant depends on C1, C2 and C(M,V,D, D̃).
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Prelude to the harmonic analysis

• By the proposition, we consider quadratic estimates of the general
form ˆ 1

0
‖QtSPtf‖2

dt

t
. ‖A‖2∞‖f‖2,

where S : L2(V)→ L2(W) and Qt : L2(W)→ L2(V), where W is
an auxiliary vector bundle and Qt is a family of operators with
sufficient decay.

• Attack this via Euclidean harmonic analysis techniques. Need
dyadic structure, sufficiently “good” notion of integration (via
some sort of fixed system of trivialisations), averaging, etc. to
import these techniques as in [BMc].
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Dyadic structure

• By the exponential volume growth assumption, we obtain the
existence of a truncated dyadic structure.

That is, there exist
countably many index sets Ik, a countable collection of open
subsets {

Qkα ⊂M : α ∈ Ik, k ∈ N
}
,

points zkα ∈ Qkα (called the centre of Qkα denoted by xQ), and
constants δ ∈ (0, 1), a0 > 0, η > 0 and C1, C2 <∞ satisfying:

(i) for all k ∈ N, µ(M\∪αQkα) = 0,
(ii) for each k,

{
Qkα
}

is mutually disjoint,
(iii) for each (k, α) and each l < k there exists a unique β such that

Qkα ⊂ Qlβ,

(iv) B(zkα, a0δ
k) ⊂ Qkα < B(zkα, C1δ

k),
(v) for all k, α and for all t > 0,

µ
{
x ∈ Qkα : d(x,M\Qkα) ≤ tδk

}
≤ C2t

ηµ(Qkα).
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Qkα ⊂ Qlβ,

(iv) B(zkα, a0δ
k) ⊂ Qkα < B(zkα, C1δ

k),
(v) for all k, α and for all t > 0,

µ
{
x ∈ Qkα : d(x,M\Qkα) ≤ tδk

}
≤ C2t

ηµ(Qkα).
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• Fix J ∈ N such that C1δ
J ≤ ρ/5, so that the scale is tS = δJ .

• Whenever j ≥ J, Qj denotes the set of cubes Qjα and make this
continuous by setting Qt = Qj if δj+1 < t ≤ δj for t ≤ tS.

• For any Q ∈ Qj , there exists a unique ancestor cube Q̂ ∈ QJ

containing Q be the GBG cube of Q.

• Call

C =
{
ψ : B(xQ , ρ)× CN → π−1

V (B(xQ , ρ)), Q ∈ QJ
}

the GBG coordinates and

CJ =
{
ψ|Q : Q × CN → π−1

V (Q), ψ ∈ C
}

the dyadic GBG coordinates.

• For Q ∈ Q, the GBG coordinates of Q are the GBG coordinates of
the GBG cube Q̂.
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Cube integration and dyadic averaging

• Define cube integration, as a map
B(x

Q̂
, ρ)×Q 3 (x,Q) 7→ (

´
Q · )(x). For u ∈ L1

loc(V), and

y ∈ B(x
Q̂
, ρ) we write(ˆ

Q
u dµ

)
(y) =

(ˆ
Q
ui dµ

)
ei(y).

Note that this integral is only defined in B(x
Q̂
, ρ).

• Define the cube average uQ ∈ L∞(V) of some u ∈ L1
loc(V) as

uQ(y) =

{ffl
Q u dµ y ∈ B(x

Q̂
, ρ)

0 y 6∈ B(x
Q̂
, ρ).

• For each t > 0, define the dyadic averaging operator
Et : L1

loc(V)→ L1
loc(V) by

Etu(x) = uQ(x)

where Q ∈ Qt and x ∈ Q.
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Constancy

• Constant functions are often required to extract principal parts of
operators.

• For x ∈ Q ∈ Q and w ∈ Vx ∼= CN , and write w = wi e
i(x) in the

GBG frame
{
ei(x)

}
associated to Q.

• Define the constant extension of w by

wc(y) =

{
wi e

i(y) y ∈ B(x
Q̂
, ρ)

0 y 6∈ B(x
Q̂
, ρ),

and we note that wc ∈ L∞(V).

• For x ∈ Q ∈ Q, and w ∈ Vx, define the principal part of Qt by

γ
Q
t (x)w = (Qtw

c)(x).
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The estimate break-up

Break up the required estimate via the “Kato square root estimate
paradigm”:

ˆ 1

0
‖QtSPtf‖2

dt

t
.
ˆ 1

0
‖(Qt − γtEt)SPtf‖2

dt

t

+

ˆ 1

0
‖γtEtS(I− Pt)f‖2

dt

t

+

ˆ 1

0
‖γtEtSf‖2

dt

t
.

=: I + II + III

This decomposition is the one that is motivated by the solution of the
Kato square root problem ([AHLMcT], [AKMc]).
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Off-diagonal decay and quadratic estimates

• Defining 〈a〉 = max {1, a}, we assume that Qt satisfies the
following off-diagonal estimates: there exists CQ > 0 such that, for
each M > 0, there exists a constant C∆,M > 0 satisfying:

‖χEQt(χFu)‖L2(V) ≤ C∆,M‖A‖2∞
〈
ρ(E,F )

t

〉−M
exp

(
−CQ

ρ(E,F )

t

)
‖χFu‖L2(W)

for every Borel set E, F ⊂M and u ∈ L2(W).

• Assume that Qt satisfies quadratic estimates: there exists C ′Q > 0
so that ˆ 1

0
‖Qtu‖2

dt

t
≤ C ′Q‖A‖2∞‖u‖2

for all u ∈ L2(W).
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Estimating term I

• Bootstrap the Poincaré inequality on functions to a dyadic version
on the bundle W assuming that W has GBG and

∣∣∇Wei(x)
∣∣ . 1.

This Poincaré inequality is: there exists CP > 0 such that

ˆ
B
|u− uQ |2 dµ ≤ CP rκecErt(rt)2

ˆ
B

(
|∇u|2 + |u|2

)
dµ

for u ∈W1,2(V), for all balls B = B(xQ , rt) with r ≥ C1/δ where
Q ∈ Qt with t ≤ tS.

• Decompose I into annuli, and using this bundle Poincaré inequality
along with the off diagonal decay and assuming
‖∇WSu‖ . ‖u‖W1,2(V), obtain the desired bound for I.

Lashi Bandara Riesz continuity of the Dirac operator 27/32



Estimating term I
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Estimating term II

• On each dyadic cube Q, and for each u ∈W1,2(V) with spt u ⊂ Q
and v ∈ D(div) with spt v ⊂ Q, we have that∣∣∣∣ˆ

Q
Du dµ

∣∣∣∣ , ∣∣∣∣ˆ
Q
∇u dµ

∣∣∣∣ . µ(Q)
1
2 ‖u‖ and∣∣∣∣ˆ

Q
div v dµ

∣∣∣∣ . µ(Q)
1
2 ‖v‖.

• For Υ one of D, D̃, ∇, or div,∣∣∣∣ 
Q

Υu dµ

∣∣∣∣2 .
1

`(Q)η

( 
Q
|u|2 dµ

) η
2
( 

Q
|Υu|2

)1− η
2

+

 
Q
|u|2 ,

for all u ∈ D(Υ), Q ∈ Q, t ∈ (0, tS],
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• For Ut one of Rt = (I + ıtD)−1, Pt = (I + t2D2)−1,
Qt = tD(I + t2D2)−1, t∇Pt, P̃tt div, and Q̃t, there exists CU > 0
such that, for each M > 0, there exists a constant C∆ > 0 so that

‖χEUt(χFu)‖ . C∆

〈
ρ(E,F )

t

〉−M
exp

(
−CU

ρ(E,F )

t

)
‖χFu‖

for every Borel set E, F ⊂M and u ∈ L2(V).

• The estimate is then a Schur-type estimate, i.e., the required
estimate follows from showing that:

‖EtS(I− Pt)Qs‖ . min

{(s
t

)α
,

(
t

s

)α}
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Estimating term III

• The measure ν is a local Carleson measure on M× (0, t′] (for
some t′ ∈ (0, tS]) if

‖ν‖C = sup
t∈(0,t′]

sup
Q∈Qt

ν(R(Q))

µ(Q)
<∞,

where R(Q) = Q × (0, `(Q)), the Carleson box over Q.

• For a Carleson measure ν, Carleson’s inequality yields

¨
M×(0,t′]

|Et(x)|2 dν(x, t) . ‖ν‖C‖u‖2

for all u ∈ L2(V).

• Reduce the estimate of III to showing that

dν(x, t) = |γt(x)|2 dµ(x)dt

t
.
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• Note that

¨
R(Q)

|γt(x)|2 dµ(x)dt

t
. sup
|w|CN=1

ˆ `(Q)

0

ˆ
Q
|γtEtwQ |2

dµdt

t
.

• Further split the right hand side:

ˆ `(Q)

0

ˆ
Q
|γtEtwQ |2

dµdt

t
.
ˆ `(Q)

0

ˆ
Q
|(γtEt −Qt)wQ |2

dµdt

t

+

ˆ `(Q)

0

ˆ
Q
|QtwQ |2

dµdt

t

• The required estimates follow immediately from off-diagonal
estimates due to the smoothness of the coefficients A.
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• The required estimates follow immediately from off-diagonal
estimates due to the smoothness of the coefficients A.
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