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Manifolds and C-close metrics

Let M and N be two smooth Spin manifolds, and g a smooth metric
on M and h a C%! metric on \V.
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Manifolds and C-close metrics

Let M and N be two smooth Spin manifolds, and g a smooth metric
on M and h a C%! metric on \V.

We assume there exists ( : M — N, a CL1 diffeomorphism. This
induces a fibrewise unitary map U(z) : (TM,g) — (TN, h) given by
U= C*[(Q*)EC*]%. This has regularity CO1.

We say that g ~ h if there exists C' > 1 satisfying: for all z € M and
u € TpM,
-1
O ulg(a) < 16euln(e(ay) < Clttlyay -
The minimal such constant is then C, = inf {C' > 1:g ~h}. Then
pum (g, ¢*h) =log(CL) is a distance metric.
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Manifolds and C-close metrics

Let M and N be two smooth Spin manifolds, and g a smooth metric
on M and h a C%! metric on \V.

We assume there exists ( : M — N, a CL1 diffeomorphism. This
induces a fibrewise unitary map U(z) : (TM,g) — (TN, h) given by
U= C*[(Q*)EC*]%. This has regularity CO1.

We say that g ~ h if there exists C' > 1 satisfying: for all z € M and
u € TpM,
C™ ulyay < [Getly(wy) < Cluly) -

The minimal such constant is then C, = inf {C' > 1:g ~h}. Then
pum (g, ¢*h) =log(CL) is a distance metric.

Throughout, we assume that g ~ h.
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Spin manifolds and the Dirac operator

By A M and AN, denote the complex spinor bundles corresponding
to the minimal complex irreducible representation.
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Spin manifolds and the Dirac operator

By A M and AN, denote the complex spinor bundles corresponding
to the minimal complex irreducible representation. Each bundle is
equipped with an inner product (-,-)*g and (-,-),;- The connection
defined by

1 a
v¢a:§§ :wb®(eb'ea‘¢a)7
b<a

where ¢_ is an orthonormal spin frame and w{ = w? €’ is the
connection 1-form, is compatible and is a module derivation.
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Spin manifolds and the Dirac operator

By A M and AN, denote the complex spinor bundles corresponding
to the minimal complex irreducible representation. Each bundle is
equipped with an inner product (-,-)*g and (-,-),;- The connection
defined by

Vhy = 5 D) @ (e ey

b<a

where ¢_ is an orthonormal spin frame and w{ = w? €’ is the
connection 1-form, is compatible and is a module derivation. The
Atiyah-Singer Spin Dirac operator is then defined by

]Z)¢ = ej : v€j1/1
for ¢ € C°.
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Compatibility and pullback operators

Inside a contractible open set ) corresponding to a frame, the map U
induces a fibrewise unitary map Vg : AQ — A ((Q) (there are two
such choices).
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Compatibility and pullback operators

Inside a contractible open set ) corresponding to a frame, the map U
induces a fibrewise unitary map Vg : AQ — A ((Q) (there are two
such choices).

If this lifts to a global map U : AM — AN, we say that A M and
AN are compatible. It is readily checked that ¥ is CO1L.

Under the map U, the Dirac operator 1Dy, pulls back to an operator
V',V that is similar to a self-adjoint operator in L2(AM).

Such a global map U always exists since we can pullback the Spin
structure on M to a compatible structure on N.
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Main Theorem

Theorem

Let M be a smooth Spin manifold with smooth, complete metric g
with Levi-Civita connection V&, let A/ be a smooth Spin manifold
with a C%! metric h, and ¢ : M — N a Cl!-diffeomorphism with
onr(g, ¢*h) < 1. We assume that the spin bundles A M and AN are
compatible. Moreover, suppose that the following hold:

(i) there exists k > 0 such that inj(M, g) > &,
(i) there exists Cr > 0 such that |Ricg| < Cr and |V8Ric,| < Ck,

(iii) there exists Cy, > 0 such that |[V&({*h)| < C}, almost-everywhere.

v
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Theorem (cont.)

Then, we have the perturbation estimate

H YLy
¢1+1z> R

where the implicit constant depends on dim M and the constants
appearing in (i)-(iii).

m(g,¢"h),
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Theorem (cont.)

Then, we have the perturbation estimate

H BB
¢1+1z> IV TR

where the implicit constant depends on dim M and the constants
appearing in (i)-(iii).

m(g,¢"h),

L2—L2

Motivations come from connections to the spectral flow as outlined
by Lesch in [L].
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Generalised bounded geometry

Let 7y : (V,h) — M be a hermitian vector bundle of dimension N.
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Generalised bounded geometry

Let 7y : (V,h) — M be a hermitian vector bundle of dimension N.

We say that (W, h) satisfies generalised bounded geometry if there
exists a uniform p > 0 and C' > 1 such that for each x € M, there is
a continuous local trivialisation ¢, : B,(z) x CY — w;l(Bp(m))
satisfying:

C™ ulen < |tha (Y)uly () < Clufen

for u € CV and y € B,(z).
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Generalised bounded geometry

Let 7y : (V,h) — M be a hermitian vector bundle of dimension N.

We say that (W, h) satisfies generalised bounded geometry if there
exists a uniform p > 0 and C' > 1 such that for each x € M, there is
a continuous local trivialisation ¢, : B,(z) x CY — w;l(Bp(m))
satisfying:

CH ulew < |2 (Y)ulyyy < Clulen

for u € CV and y € B,(z).

The value p is called the GBG radius and in application, the GBG
trivialisations have higher regularity.
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Exponential growth and local Poincaré inequality

We say that (M, g, 1) has exponential volume growth if there exists
cg > 1, k,c¢> 0 such that

0 < u(B(z,tr)) < ct®eB" u(B(x,r)) < oo, (Eioc)

foreveryt > 1, r >0 and x € M.
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Exponential growth and local Poincaré inequality

We say that (M, g, 1) has exponential volume growth if there exists
cg > 1, k,c¢> 0 such that

0 < pu(B(a,tr)) < ct"e®" u(B(z,r)) < oo, (Eoc)
foreveryt > 1, r >0 and x € M.

The manifold M satisfies a local Poincaré inequality if there exists
cp > 1 such that for all f € WH2(M),

1f = fell2@) < cp rad(B)| fllwr2(s) (Pioc)

for all balls B in M such that rad(B) < 1.
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First order differential operators on V

We say that an operator D : C*°(V) — L (V) is a first-order

differential operator if inside each frame {¢'} for V and {v;} for TM
near x, there exist coefficients a’” and terms w¥ such that

" A
Du = (o7 "V, up + uiwy;) e,

where u = u;e' € C*(V).
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First order differential operators on V

We say that an operator D : C*°(V) — L{* (V) is a first-order

loc

differential operator if inside each frame {¢'} for V and {v;} for TM
near x, there exist coefficients a’” and terms w¥ such that

" A
Du = (o7 "V, up + uiwy;) e,

where u = u;e' € C*(V).

The coefficients wf are not necessarily smooth. In fact, typically, these

coefficients are simply L .
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First order differential operators on V

We say that an operator D : C*°(V) — L (V) is a first-order

differential operator if inside each frame {¢'} for V and {v;} for TM
near x, there exist coefficients a’” and terms w¥ such that

" o
Du = (o7 "V, up + ujwy) €,

where u = u;e' € C*(V).

The coefficients wf are not necessarily smooth. In fact, typically, these
coefficients are simply L .

We consider two essentially self-adjoint first-order differential
operators D and D on C2°(V), and with slight abuse of notation we
use this notation for their self-adjoint extensions.
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The framework /hypothesis

(A1) M and V are finite dimensional, quantified by dim M < oo and
dimV < oo,
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(A2) (M,g) has exponential volume growth quantified by ¢ < oo,
cg <00 and k < oo in (Ejoc),

(A3) A local Poincaré inequality (Pjoc) holds on M with constant
cp < 00,

(A4) T*M has C%! GBG frames v; quantified by pr+aq > 0 and
Cr+pm < 00, with regularity |Vv;| < Carepm with Cgpspq < 00
almost-everywhere,
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The framework /hypothesis

(A1) M and V are finite dimensional, quantified by dim M < oo and
dimV < oo,

(A2) (M,g) has exponential volume growth quantified by ¢ < oo,
cg <00 and k < oo in (Ejoc),

(A3) A local Poincaré inequality (Pjoc) holds on M with constant
cp < 00,

(A4) T*M has C%! GBG frames v; quantified by pr+aq > 0 and
Cr+pm < 00, with regularity |Vv;| < Carepm with Cgpspq < 00
almost-everywhere,

(A5) V has C%! GBG frames e; quantified by py, > 0 and Cy < oo,
with regularity |Ve;| < Cgy with Cgy < oo almost-everywhere,
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(A6) D is a first-order PDO with L coefficients. In particular, [D,n] is
a pointwise multiplication operator on almost-every fibre V., and
there exists cp > 0 such that

|[D, ] u(z)| < ep Lipn(z) [u(z)]

for almost-every x € M, every bounded Lipschitz function 7, and
where Lip n(z) is the pointwise Lipschitz constant.

Lashi Bandara Riesz continuity of the Dirac operator 11/32



(A6) D is a first-order PDO with L coefficients. In particular, [D,n] is
a pointwise multiplication operator on almost-every fibre V., and
there exists cp > 0 such that

|[D, ] u(z)| < ep Lipn(z) [u(z)]

for almost-every x € M, every bounded Lipschitz function 7, and
where Lip n(z) is the pointwise Lipschitz constant.

(A7) D satisfies |De;| < Cp,y with Cpy < 0o almost-everywhere inside
each GBG frame {e;},
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(A8) D and D both have domains W2(V) with C > 1 the smallest
constants satisfying

CHullp < [Jullwrz < Cllullp  and
CHullp < llullwrz < Cllulls.
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(A8) D and D both have domains W2(V) with C > 1 the smallest
constants satisfying

CHullp < [Jullwrz < Cllullp  and
CHullp < llullwrz < Cllulls.

(A9) D satisfies the Riesz-Weitzenbock condition
IV2ull < ew (ID*ul| + [lull)

with ey < .
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(A8) D and D both have domains W2(V) with C > 1 the smallest
constants satisfying

C7Hlullp < [lulwrz < Cllullp  and
C7Mully < ullwrz < Cllull.
(A9) D satisfies the Riesz-Weitzenbock condition
IV2ull < ew (ID*ul| + [lull)

with ey < .

The implicit constants in our perturbation estimates will be allowed
to depend on C(M,V, D, D) which is the maximum of the constants
appearing in (A1)-(A9).
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The general theorem

Theorem

Let (M, g) be a smooth Riemannian manifold with g that is C%1,
complete, and satisfying (Ejoc) and (Pioc). Let (V,h, V) be a smooth
vector bundle with C%! metric h and connection V that are

compatible almost-everywhere.
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The general theorem

Theorem

Let (M, g) be a smooth Riemannian manifold with g that is C%1,
complete, and satisfying (Ejoc) and (Pjoc). Let (V,h, V) be a smooth
vector bundle with C%! metric h and connection V that are
compatible almost-everywhere.

Let D, D be self-adjoint operators on L2~(V) and assume the
hypotheses (A1)-(A9) on M, V, D and D. Let

A e L®(L(T* M2 V,V)),
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The general theorem

Theorem

Let (M, g) be a smooth Riemannian manifold with g that is C%1,
complete, and satisfying (Ejoc) and (Pjoc). Let (V,h, V) be a smooth
vector bundle with C%! metric h and connection V that are
compatible almost-everywhere.

Let D, D be self-adjoint operators on L2~(V) and assume the
hypotheses (A1)-(A9) on M, V, D and D. Let

Ay € L®(L(T*M @ V,V)),
Ay € L®(WH2(V), D(div)),
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The general theorem

Theorem

Let (M, g) be a smooth Riemannian manifold with g that is C%1,
complete, and satisfying (Ejoc) and (Pjoc). Let (V,h, V) be a smooth
vector bundle with C%! metric h and connection V that are
compatible almost-everywhere.

Let D, D be self-adjoint operators on L2~(V) and assume the
hypotheses (A1)-(A9) on M, V, D and D. Let

A e L®(L(T* M2 V,V)),
Ay € L®(WH(V), D(div)),
Az € L>®(L(V)),

and let ||Alloo = || A1lloo + [[A2]|0o + || A3]|co-
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Assume that
Dy = Doy + A1V + div Asth + Ag),

holds in a distributional sense for 1 € W12(V).
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Assume that
Dip = Dip + A Vo + div Ayep + As),
holds in a distributional sense for 1 € W12(V).

Then, for each w € (0,7/2) and o € (0, 0], whenever
f € Hol™(8g, ,), we have the perturbation estimate

1£(D) = fD)levysr2e) S 1L, 1Al

where the implicit constant depends on C(M,V,D, D).
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Assume that
Dip = Dip + A Vo + div Ayep + As),
holds in a distributional sense for 1 € W12(V).

Then, for each w € (0,7/2) and o € (0, 0], whenever
f € Hol™(8g, ,), we have the perturbation estimate

1£(D) = fD)levysr2e) S 1L, 1Al

where the implicit constant depends on C(M,V,D, D).

Note, S¢, , := {x +iy : y? < tan wa? + 02} .
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Obtaining the main theorem from the general

¢ Note that g is smooth, h is locally Lipschitz, and set V = A M to
a spin bundle of (M, g) along with a compatible spin bundle AN
on (N,h). Let D = I, and D=V "D,V
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¢ Note that g is smooth, h is locally Lipschitz, and set V = A M to
a spin bundle of (M, g) along with a compatible spin bundle AN
on (N,h). Let D = I, and D=V "D,V

¢ The bound Ric > —CRg yields (A2) and (A3) by the
Bishop-Gromov volume comparison theorem.
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a spin bundle of (M, g) along with a compatible spin bundle AN
on (N,h). Let D = I, and D=V "D,V

¢ The bound Ric > —CRg yields (A2) and (A3) by the
Bishop-Gromov volume comparison theorem.

¢ The bounds |Ric| < Cg and inj(M, g) > & yields (A4), (A5), and
(A7) via the existence of harmonic coordinates with a uniform
radius p > 0 and with |9g;;| S 1.
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Obtaining the main theorem from the general

¢ Note that g is smooth, h is locally Lipschitz, and set V = A M to
a spin bundle of (M, g) along with a compatible spin bundle AN
on (N,h). Let D = I, and D=V "D,V

¢ The bound Ric > —CRg yields (A2) and (A3) by the
Bishop-Gromov volume comparison theorem.

¢ The bounds |Ric| < Cg and inj(M, g) > & yields (A4), (A5), and
(A7) via the existence of harmonic coordinates with a uniform
radius p > 0 and with |9g;;| S 1.

¢ The ellipticity D(ID,) = WH?(A M) can be seen immediately from
the fact that Ric > —CRrg which implies Rg > —Cr and by
invoking the Bochner formula. For the other operator, we need the
following Lemma.
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Lemma

Under the geometric assumptions: inj(M,g) > k, |Ric| < Cr , there
exists a sequence of points x; and a smooth partition of unity {n;}
uniformly locally finite and subordinate to { B(x;, )} satisfying

> | V7ni|) < Cy for j =0, ...,2. Moreover, there exists M > 0 such
that 1 < M > . n?.
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Lemma

Under the geometric assumptions: inj(M,g) > k, |Ric| < Cr , there
exists a sequence of points x; and a smooth partition of unity {n;}
uniformly locally finite and subordinate to { B(xz;, 1)} satisfying

> ‘ij‘) < Cpy forj =0,...,2. Moreover, there exists M > 0 such
that 1 < M > . n?.

¢ This partition of unity and uniform sized trivialisations can be
pushed over via the C1! diffeomorphism to N with similar
gradient bounds to get D(1),) = WH2(AN) and (A8).
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Lemma

Under the geometric assumptions: inj(M,g) > k, |Ric| < Cr , there
exists a sequence of points x; and a smooth partition of unity {n;}
uniformly locally finite and subordinate to { B(xz;, 1)} satisfying

> ‘ij‘) < Cpy forj =0,...,2. Moreover, there exists M > 0 such
that 1 < M > . n?.

v

¢ This partition of unity and uniform sized trivialisations can be
pushed over via the C1! diffeomorphism to N with similar
gradient bounds to get D(1),) = WH2(AN) and (A8).

¢ The Riesz-Weitzenbock condition (A9) is obtained by a similar
localisation along with the addition assumption |V&Ric| < Cr
which yields |0,0;gi;] < 1 inside harmonic balls.
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The operator decomposition

¢ The decomposition D — D' = ALV + div A + AY inside a local
trivialisation €2 is a matter of calculation and does not require

curvature assumptions.
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The operator decomposition

¢ The decomposition D — D' = ALV + div A + AY inside a local
trivialisation €2 is a matter of calculation and does not require
curvature assumptions.
¢ To obtain a global decomposition, we require a Lipschitz partition
of unity {n;} subordinate to local trivialisations on balls {B;}
satisfying: there exists C', Co, C's > 0 such that
(i) [Vejal < Ch,
(i) \aej,kg(ej,i,ejyl)\ < (5, where g = (*h, and
(iii) |VT}j‘ < C4
forall i,k,l=1,....,n=dim(M) and all j =1,....
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The operator decomposition

¢ The decomposition D — D' = ALV + div A + AY inside a local
trivialisation €2 is a matter of calculation and does not require
curvature assumptions.
¢ To obtain a global decomposition, we require a Lipschitz partition
of unity {n;} subordinate to local trivialisations on balls {B;}
satisfying: there exists C, Co, C3 > 0 such that
(i) [Vejal < Ch,
(i) \aej,kg(ej,i,ejyl)\ < (5, where g = (*h, and
(iii) |VT}j‘ < C4
forall i,k,l=1,....,n=dim(M) and all j =1,....
¢ It is easy to see our previous Lemma and gradient bound
[VE(C™h)| S 1 imply (i)-(iii).
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Reduction to quadratic estimates

For ¢t > 0, let us define operators

1 ~ 1

P,=——
P Iy ep2 t

= m7 Qt = t]:)],jt7 and Qt = th)t
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Reduction to quadratic estimates

For ¢t > 0, let us define operators

1 ~ 1

_ _ _ — {DP d Q;=tDP,.
I+t2D27 I+t2D27 Qt ts an Qt t

Pt t —

The fact that D and D are self adjoint gives
o~ dt 1 o dt
[0 § < Sl and [ QP <
0 0

and also

IN

1 2
Sl

~ ~ 1
sup |[Pel, sup [[Pefl, sup [|Qefl, sup [|Qefl < 3.
t t t t
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Proposition

Suppose that
b —1 o dt 2 11112
| 1AV @+ D) PP < CullAI SR, and
. o dt 2 11112
| IePediv Aspof 2 5 < oA

for all u € L2(V). Then, for w € (0,7/2) and o € (0,00), whenever
f € Hol™ (S, ,), we obtain that

1F D) = FO)I < [ fllooll Allc

where the implicit constant depends on Cy, Cy and C(M,V, D, ]3).
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Prelude to the harmonic analysis

e By the proposition, we consider quadratic estimates of the general
form

/ Qs> < < AN 1P,
where S : L2(V) — L2(W) and Q; : L2(W) — L2(V), where W is

an auxiliary vector bundle and Q; is a family of operators with
sufficient decay.
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Prelude to the harmonic analysis

e By the proposition, we consider quadratic estimates of the general

form

dt
2 = S IAIZIAIP,

[ 1aseal
where S : L2(V) — L2(W) and Q; : LQ(W) — L2(V), where W is
an auxiliary vector bundle and Q; is a family of operators with
sufficient decay.

e Attack this via Euclidean harmonic analysis techniques. Need
dyadic structure, sufficiently “good” notion of integration (via
some sort of fixed system of trivialisations), averaging, etc. to
import these techniques as in [BMc].
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Dyadic structure

e By the exponential volume growth assumption, we obtain the
existence of a truncated dyadic structure.
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Dyadic structure
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points 2% € QF (called the centre of Q% denoted by x¢), and

constants 0 € (0,1), ap > 0, n > 0 and C1,Cy < oo satisfying:
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countably many index sets I, a countable collection of open

subsets
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points 2% € QF (called the centre of Q% denoted by x¢), and

constants 0 € (0,1), ap > 0, n > 0 and C1,Cy < oo satisfying:

(i) forall k € N, u(M\ UsQF) =0,
(ii) for each k, {Q%} is mutually disjoint,
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points 2% € QF (called the centre of Q% denoted by x¢), and
constants 0 € (0,1), ap > 0, n > 0 and C1,Cy < oo satisfying:
(i) forall k € N, u(M\ UsQF) =0,
(ii) for each k, {Q%} is mutually disjoint,
(iii) for each (k, ) and each I < k there exists a unique (3 such that
Qh C Qf,
(iv) B(zk,apd%) C QF < B(2F, C16%),
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Dyadic structure

e By the exponential volume growth assumption, we obtain the
existence of a truncated dyadic structure. That is, there exist
countably many index sets I, a countable collection of open

subsets
{QQCM:QGIk, kEN},

points 2% € QF (called the centre of Q% denoted by x¢), and
constants 0 € (0,1), ap > 0, n > 0 and C1,Cy < oo satisfying:
(i) forall k € N, u(M\ UsQF) =0,
(ii) for each k, {Q%} is mutually disjoint,
(iii) for each (k, ) and each I < k there exists a unique (3 such that
Q8 € Q5.
(iv) B(zk,apd%) C QF < B(2F, C16%),
(v) for all k, o and for all ¢ > 0,
pie € Qn dle, M\ Qp) < 16"} < Cot"u(QF).
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e Fix J € N such that C187 < p/5, so that the scale is tg = 57.
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e Fix J € N such that C187 < p/5, so that the scale is tg = 57.

e Whenever j > J, 27 denotes the set of cubes Q’, and make this
continuous by setting 2; = 27 if 7! <t < §7 for t < tg.

e For any Q € 27, there exists a unique ancestor cube @ c 2!
containing () be the GBG cube of Q).

e Call
€ = {w : B($Q7p) X CN — W\;I(B(ZEva))v Q € QJ}

the GBG coordinates
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continuous by setting 2; = 27 if 7! <t < §7 for t < tg.

e For any Q € 27, there exists a unique ancestor cube @ c 2!
containing () be the GBG cube of Q).

e Call
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the GBG coordinates and
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the dyadic GBG coordinates.

Lashi Bandara Riesz continuity of the Dirac operator 22/32



e Fix J € N such that C187 < p/5, so that the scale is tg = 57.

e Whenever j > J, 27 denotes the set of cubes Q’, and make this
continuous by setting 2; = 27 if 7! <t < §7 for t < tg.

e For any Q € 27, there exists a unique ancestor cube @ c 2!
containing () be the GBG cube of Q).

e Call
¢ = {¢: B(zq,p) x CV = m,;'(B(zq,p)), Q € 27}
the GBG coordinates and
6 ={vlg:QxC¥ > 5'(Q), vee}

the dyadic GBG coordinates.

e For ) € 2, the GBG coordinates of () are the GBG coordinates of
the GBG cube Q.
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Cube integration and dyadic averaging

e Define cube integration, as a map
B(zg,0) x 25 (2,Q) = (Jo-)( . Foru e L (V), and
y € B(zs o P p) we write

</Qud,u> (y) = (/Qu du> ¢i(y).
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Cube integration and dyadic averaging

e Define cube integration, as a map
B(zg,0) x 25 (2,Q) = (Jo-)( . Foru e L (V), and
y € B(zs o P p) we write

</Qud,u> (y) = (/Qu du> ¢i(y).

Note that this integral is only defined in B(z5, p).
e Define the cube average ug € L>®(V) of some u € L{. (V) as

(o) — 4 Jowdin Y €Blag,p)
al) {0 y & B(zg, p)-
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Cube integration and dyadic averaging

e Define cube integration, as a map
B(zg,0) x 25 (2,Q) = (Jo-)( . Foru e L (V), and
y € B(z; o P p) we write

</Qud,u> (y) = (/Qu du> ¢i(y).

Note that this integral is only defined in B( ,P)-
e Define the cube average ug € L>®(V) of some u € L{. (V) as

(o) — 4 Jowdin Y €Blag,p)
al) {0 y & B(zg, p)-

e For each t > 0, define the dyadic averaging operator
E¢ : Ljgo (V) = Lig (V) by
Eru(z) = uq(x)
where QQ € Z; and x € Q.
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Constancy

e Constant functions are often required to extract principal parts of
operators.
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GBG frame {¢(z)} associated to Q.

e Define the constant extension of w by

el = 4 e'(y) y € Blag,p)
) {o y & Blug,p),

and we note that w® € L>®(V).
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Constancy

e Constant functions are often required to extract principal parts of
operators.

e ForrcQ e 2andwecV,=CV, and write w = w; €'(x) in the
GBG frame {¢(z)} associated to Q.

e Define the constant extension of w by

el = 4 e'(y) y € Blag,p)
g {o y & Blug,p),

and we note that w® € L>®(V).
e Forx € Q € 2, and w € V,, define the principal part of Q; by

YR (2)w = (Qud) ().
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The estimate break-up

Break up the required estimate via the “Kato square root estimate
paradigm”:

1 d
Au@%mﬁ</n@ YViE)SP.f2 2

dt
+/Hw&ﬂLJMﬂF
dt
/ HvtEtSfH? :
= [+ I1T+1II
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The estimate break-up

Break up the required estimate via the “Kato square root estimate
paradigm”:

d d
/H@%mﬁt /H@ VE)SP S &

dt
4 / IyES(T— PP &
0

1 dt
+/WMmWW-
0

=IT+I1+1I]

This decomposition is the one that is motivated by the solution of the
Kato square root problem ([AHLMcT], [AKMc]).
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Off-diagonal decay and quadratic estimates
e Defining (a) = max {1, a}, we assume that Q; satisfies the

following off-diagonal estimates: there exists Cq > 0 such that, for
each M > 0, there exists a constant Ca ys > 0 satisfying:
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Off-diagonal decay and quadratic estimates

e Defining (a) = max {1, a}, we assume that Q; satisfies the
following off-diagonal estimates: there exists Cq > 0 such that, for
each M > 0, there exists a constant Ca ys > 0 satisfying:

p(E, F)\ ™"
el < CanllAl (25 )

p(E, F
exp (—Cq(t)> IxFullLeom

for every Borel set E, FF C M and u € L2(W).
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Off-diagonal decay and quadratic estimates

e Defining (a) = max {1, a}, we assume that Q; satisfies the
following off-diagonal estimates: there exists Cq > 0 such that, for
each M > 0, there exists a constant Ca ys > 0 satisfying:

p(E,F) >M

t

IxeQexru)llee < Can \|A||§o<

p(E, F)

exp (—CQ "

) HXFUHL2(W)

for every Borel set E, FF C M and u € L2(W).

e Assume that Q; satisfies quadratic estimates: there exists C{Q >0
so that

dt
/ lQuul? % < ClllAIZ )
for all u € L2(W).
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Estimating term [

e Bootstrap the Poincaré inequality on functions to a dyadic version
on the bundle W assuming that ¥V has GBG and ‘VWei(:c)‘ S
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Estimating term [

e Bootstrap the Poincaré inequality on functions to a dyadic version
on the bundle W assuming that ¥V has GBG and ‘Vwel(:c)‘ S L
This Poincaré inequality is: there exists C'p > 0 such that

/ lu —ugl? du < C’pr“ecE”(rt)Q/ <|Vu]2 + ]u|2> du
B B

for u € Wh2(V), for all balls B = B(zg, rt) with r > C1 /5 where
Q € 2; with t < tg.
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Estimating term [

e Bootstrap the Poincaré inequality on functions to a dyadic version
on the bundle W assuming that ¥V has GBG and ‘Vwel(:c)‘ S L
This Poincaré inequality is: there exists C'p > 0 such that

/ lu —ugl? du < C’pr“ecE”(rt)Q/ <|Vu]2 + ]u|2> du
B B

for u € Wh2(V), for all balls B = B(zg, rt) with r > C1 /5 where
Q € 2; with t < tg.

e Decompose [ into annuli, and using this bundle Poincaré inequality
along with the off diagonal decay and assuming
VW Su|| < [|[[w1.2(1), obtain the desired bound for I.
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Estimating term I]

e On each dyadic cube @, and for each u € W2(V) with spt u C Q
and v € D(div) with spt v C @, we have that

‘/Dud,u
Q

. 1
\meqummﬂw.

,yévum4§MQﬁWHam
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Estimating term I]

e On each dyadic cube @, and for each u € W2(V) with spt u C Q
and v € D(div) with spt v C @, we have that

‘/Dudu
Q

. 1
\meqummﬂw.

, ' /Q Vu du‘ < u(@)F |l and

e For Y one of D, 15, V, or div,

‘72 a5 ar (]{2 uf d“)g <]é |Tul2>lg S ALR

forallu e D(T), Q € 2, t € (0,tg],
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e For U; one of Ry = (I+uD)~ !, Py = (I+¢*D?)71,
Q: = tD(I+t2D?)~!, tVP;, Pstdiv, and Qy, there exists Cy > 0
such that, for each M > 0, there exists a constant C'a > 0 so that

E, )\ M E,F
Ieetitera)] < Ca (P50 exp (~0u 28 el

for every Borel set E, F C M and u € L2(V).
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e For U; one of Ry = (I+uD)~ !, Py = (I+¢*D?)71,
Q: = tD(I+t2D?)~!, tVP;, Pstdiv, and Qy, there exists Cy > 0
such that, for each M > 0, there exists a constant C'a > 0 so that

E, )\ M E,F
Ieetitera)] < Ca (P50 exp (~0u 28 el

for every Borel set E, F C M and u € L2(V).

e The estimate is then a Schur-type estimate, i.e., the required
estimate follows from showing that:

IE:S (I~ P1)Qs]| S min { (;)a ’ @a}
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Estimating term 111

e The measure v is a local Carleson measure on M x (0, '] (for
some t' € (0,tg]) if

e = sup sup LEEQ)

< 00,
te(0r]Qe2,  H(Q)

where R(Q) = Q x (0,4(Q)), the Carleson box over Q.
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e The measure v is a local Carleson measure on M x (0, '] (for
some t' € (0,tg]) if

e = sup sup LEEQ)

< 00,
te(0r]Qe2,  H(Q)

where R(Q) = Q x (0,4(Q)), the Carleson box over Q.

e For a Carleson measure v, Carleson's inequality yields

// B(2)* dv(z,t) S [|vilelul?
Mx(0,/]

for all u € L2(V).
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Estimating term 111

e The measure v is a local Carleson measure on M x (0, '] (for
some t' € (0,tg]) if

e = sup sup LEEQ)

< 00,
te(0r]Qe2,  H(Q)

where R(Q) = Q x (0,4(Q)), the Carleson box over Q.

e For a Carleson measure v, Carleson's inequality yields

// B(2)* dv(z,t) S [|vilelul?
Mx(0,/]

for all u € L2(V).
e Reduce the estimate of I/ to showing that

du(x)dt
avla.t) = () POL
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e Note that

du(x)dt d dt
[ e #O gy [ / [yiEwql? 4
R(Q) [wlenv=1J0
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e Note that

d dpudt.
// ye(a))? S22 ( N| up / / lyEewg > —— M
'LUCN 1

e Further split the right hand side:

‘@) dpdt ‘@) dpdt
| o % < / (VeE: — Quyug ? 4t
0 Q t 0 t

/Q>/|Q Qdudt
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e Note that

du(x)dt d dt
[ et 0%y [ [ g 2
R(Q) lwlen=1/0

e Further split the right hand side:

{Q) dudt {Q) dudt
/ /|YtEth|2 a / /|YtEt Q)w 2 M
@) dudt
[ Qe
0 Q

e The required estimates follow immediately from off-diagonal
estimates due to the smoothness of the coefficients A.
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