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Setup
Let M be a smooth, complete Riemannian manifold with metric g,
Levi-Civita connection ∇, and volume measure dµ.

Write div = −∇∗ in L2 and let S = (I,∇).

Consider the following uniformly elliptic second order differential operator
LA : D(LA) ⊂ L2(M)→ L2(M) defined by

LAu = aS∗ASu = −adiv(A11∇u)− adiv(A10u) + aA01∇u+ aA00u.

where a and A = (Aij) are L∞ multiplication operators.

That is, that there exist κ1, κ2 > 0 such that

Re 〈av, v〉 ≥ κ1 ‖v‖2 , v ∈ L2

Re 〈ASu, Su〉 ≥ κ2(‖u‖2 + ‖∇u‖2), u ∈W1,2
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The Kato square root problem

The Kato square root problem on manifolds is to determine when the
following holds:

{
D(
√

LA) = W1,2(M)∥∥√LAu
∥∥ ' ‖∇u‖+ ‖u‖ = ‖u‖W1,2 , u ∈W1,2(M)
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Theorem (B.-Mc [3])

Let (M, g) be a smooth, complete Riemannian manifold |Ric| ≤ C and
inj(M) ≥ κ > 0. Suppose there exist κ1, κ2 > 0 such that

Re 〈av, v〉 ≥ κ1 ‖v‖2

Re 〈ASu, Su〉 ≥ κ2 ‖u‖2W1,2

for v ∈ L2(M) and u ∈W1,2(M). Then, D(
√

LA) = D(∇) = W1,2(M)
and ‖

√
LAu‖ ' ‖∇u‖+ ‖u‖ = ‖u‖W1,2 for all u ∈W1,2(M).
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Stability

Theorem (B.-Mc [3])

Let (M, g) be a smooth, complete Riemannian manifold with |Ric| ≤ C
and inj(M) ≥ κ > 0. Suppose that there exist κ1, κ2 > 0 such that

Re 〈av, v〉 ≥ κ1 ‖v‖2

Re 〈ASu, Su〉 ≥ κ2 ‖u‖2W1,2

for v ∈ L2(M) and u ∈W1,2(M). Then for every ηi < κi, whenever
‖ã‖∞ ≤ η1, ‖Ã‖∞ ≤ η2, the estimate∥∥∥√LA u−

√
LA+Ã u

∥∥∥ . (‖ã‖∞ + ‖Ã‖∞) ‖u‖W1,2

holds for all u ∈W1,2(M). The implicit constant depends in particular on
A, a and ηi.
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Axelsson (Rosén)-Keith-McIntosh framework

In [2], the authors created a first-order framework using the language of
Dirac type operators to study such problems.

(H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert
space H ,

(H2) Suppose that B1, B2 ∈ L(H ) such that here exist κ1, κ2 > 0
satisfying

Re 〈B1u, u〉 ≥ κ1 ‖u‖2 and Re 〈B2v, v〉 ≥ κ2 ‖v‖2

for u ∈ R(Γ∗) and v ∈ R(Γ),

(H3) The operators B1, B2 satisfy B1B2R(Γ) ⊂ N (Γ) and
B2B1R(Γ∗) ⊂ N (Γ∗).

Let Γ∗B = B1Γ
∗B2, ΠB = Γ + Γ∗B and Π = Γ + Γ∗.
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Quadratic estimates and Kato type problems

Proposition

If (H1)-(H3) are satisfied and

ˆ ∞
0

∥∥tΠB(I + t2Π2
B)−1u

∥∥2 dt

t
' ‖u‖

for u ∈ R(ΠB), then

(i) D(Γ) ∩ D(Γ∗B) = D(ΠB) = D(
√

Π2
B), and

(ii) ‖Γu‖+ ‖ΓBu‖ ' ‖ΠBu‖ ' ‖
√

Π2
Bu‖, for all u ∈ D(ΠB).

This result has been at the heart of the work of Axelsson (Rosén), Keith,
McIntosh in [2] and [1], as well as the work of Morris in [5] and B. in [4].
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Set H = L2(M)⊕ (L2(M)⊕ L2(T∗M)).

Define

Γg =

(
0 0
S 0

)
, B1 =

(
a 0
0 0

)
, and B2 =

(
0 0
0 A

)
.

Then,

Γ∗g =

(
0 S∗g
0 0

)
and Π2

B =

(
LA 0
0 ∗

)

and
ΠB,g(u, 0) = (0, u,∇u) and

√
Π2
B,g(u, 0) = (

√
LAu, 0).
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Measure notions on manifolds independent of a metric

Definition (Notions of measure)

We say that:

(i) a set A ⊂M is measurable if whenever (U,ψ) is a chart satisfying
U ∩A 6= ∅, then ϕ(U ∩A) ⊂ Rn is L -measurable,

(ii) a function f :M→ C is measurable if f ◦ ψ−1 : ψ(U)→ C is
L -measurable for each chart (U,ψ),

(iii) a tensor field T :M→ T (r,s)M is measurable if the coefficients
T j1,...,jsi1,...,ir

in each (U,ψ) is measurable,

(iv) a set Z is a null set or set of null measure if requiring
L (ϕ(U ∩ Z)) = 0 for each chart (U,ψ),

(v) a property P is valid almost-everywhere if it is valid L -a.e. in each
coordinate chart (U,ψ).
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Rough metrics

Definition (Rough metric)

Suppose that g ∈ Γ(T (2,0)M) is symmetric and satisfies the following
local comparability condition: for every x ∈M, there exists a chart (U,ψ)
near x and constant C ≥ 1 such that

C−1 |u|ψ∗δ(y) ≤ |u|g(y) ≤ C |u|ψ∗δ(y)

for u ∈ TyM and for almost-every y ∈ U .
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Properties of the induced measure

(i) 0 < |u|g(x) <∞ for 0 6= u ∈ TxM for almost-every x ∈M

,

(ii) a set A ⊂M is measurable if and only if it is µg measurable,

(iii) a function f :M→ C is measurable if and only if it is µg
measurable,

(iv) Z is a set of null measure if and only if µg(Z) = 0,

(v) a property P holds a.e. in M if and only if it holds µg-a.e,

(vi) g is Borel and finite on compact sets.
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If γ : I →M is an absolutely continuous curve then |γ̇(t)|g(γ(t)) is
measurable and summable.

As a consequence, we define

dg(x, y) = inf {`g(γ) : γ(0) = x, γ(1) = y, γ abs. cts.}

The map dg :M×M→ R+ is a pseudo-metric and the induced topology
is coarser than the topology of M.
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Lp spaces, Sobolev spaces

Lp(T (r,s)M, g) space defined as f ∈ Γ(T (r,s)M) such that

‖f‖pp =

ˆ
M
|f(x)|pg(x) dµg(x) <∞.

The Sobolev space W1,p(M, g) is the defined as the set u ∈ C∞ ∩ L2(M)
with ∇u ∈ C∞ ∩ L2(M) under the norm ‖· ‖W1,p = ‖· ‖p + ‖∇· ‖p . The

space W1,p
c (M, g) is the the closure of C∞c (M) under ‖· ‖W1,p .
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Divergence

Proposition

The space C∞c (T (r,s)M) is dense in Lp(T (r,s)M, g). The operators
∇p : C∞ ∩ Lp(M)→ C∞ ∩ Lp(T∗M) and ∇c : C∞c (M)→ C∞c (T∗M)
are closable, densely-defined operators. Furthermore, W1,p(M) = D(∇p)
and W1,p

0 = D(∇c).

For the case p = 2, we define

divg = −∇2
∗, and div0,g = −∇0

∗,

which operator theory guarantees are closed, densely-defined.
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Uniformly close geometries

Definition (Uniformly close metrics)

Let g and g̃ be two rough metrics and support there exists C ≥ 1 such that

C−1 |u|g̃(x) ≤ |u|g(x) ≤ C |u|g̃(x) ,

for u ∈ TxM and almost-every x in M. Then, we say that g and g̃ are
uniformly close or C-close. If the inequality holds everywhere, then we say
that the two metrics are C-close everywhere.

If g and g̃ are both at least continuous, then C-close and C-close
everywhere are equivalent.
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For any two metrics, there exists a.e. symmetric positive
B ∈ Γ(T∗M⊗ TM) such that

gx(u, v) = g̃x(B(x)u, v)

for almost-every x.

The volume measure is then dµg = θ dµg̃ where

θ =
√

det B.

Furthermore,
C−

n
2 µg̃ ≤ µg ≤ C

n
2 µg.
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Preservation of Lp spaces

Let g and g̃ be two C-close rough metrics. Then, the following hold for
the Lp spaces:

(i) whenever p ∈ [1,∞), Lp(T (r,s), g) = Lp(T (r,s), g̃) with

C
−
(
r+s+ n

2p

)
‖u‖p,g̃ ≤ ‖u‖p,g ≤ C

r+s+ n
2p ‖u‖p,g̃ ,

(ii) for p =∞, L∞(T (r,s), g) = L∞(T (r,s), g̃) with

C−(r+s) ‖u‖∞,g̃ ≤ ‖u‖∞,g ≤ C
r+s ‖u‖∞,g̃ ,
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Preservation of Sobolev spaces

(i) the Sobolev spaces W1,p(M, g) = W1,p(M, g̃) and
W1,p

0 (M, g) = W1,p
0 (M, g̃) with

C
−
(
1+ n

2p

)
‖u‖W1,p,g̃ ≤ ‖u‖W1,p,g ≤ C

1+ n
2p ‖u‖W1,p,g̃ ,

(ii) the Sobolev spaces Wd,p(M, g) = W1,p(M, g̃) and

Wd,p
0 (M, g) = Wd,p

0 (M, g) with

C
−
(
n+ n

2p

)
‖u‖Wd,p,g̃ ≤ ‖u‖Wd,p,g ≤ C

n+ n
2p ‖u‖Wd,p,g̃ ,

(iii) the divergence operators satisfy divg = θ−1 divg̃ θB and
div0,g = θ−1 div0,g̃ θB.
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Reduction of the problem

As before, let H = L2(M)⊕ L2(M)⊕ L2(T∗M) with two inner products
〈· , · 〉g and 〈· , · 〉g̃ induced by by g and g̃ respectively.

Let S = (I,∇2) and

Γ =

(
0 0
S 0

)
, Γ∗g =

(
0 S∗g
0 0

)
, Γ∗g̃ =

(
0 S∗g̃
0 0

)
.

Let E(u, v, w) = (θu, θv, θBw) so that 〈u, v〉g = 〈Eu, v〉g̃ for all
u, v ∈H .

Then, Γ∗g = E−1Γ∗g̃E.
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Reduction of the problem (cont.)

As before, let a ∈ L∞(M) and A ∈ L∞(L(L2(M)⊕ L2(T∗M)) with
constants κ1, κ2 > 0 such that

Re 〈au, u〉g ≥ κ1 ‖u‖
2
g

Re 〈Av, v〉g ≥ κ2 ‖v‖
2
W1,2,g

for u ∈ L2(M) and v ∈W1,2(M).

Then, writing

B1 =

(
a 0
0 0

)
, B2 =

(
0 0
0 A

)
,

let

ΠB,g = Γ +B1Γ
∗
gB2 = Γ +B1E

−1Γ∗g̃EB2 = Γ + B̃1Γ
∗
g̃B̃2 = ΠB̃,g̃.

Lashi Bandara (ANU) Quadratic estimates and non-smooth metrics 19 November 2013 20 / 25



Reduction of the problem (cont.)

As before, let a ∈ L∞(M) and A ∈ L∞(L(L2(M)⊕ L2(T∗M)) with
constants κ1, κ2 > 0 such that

Re 〈au, u〉g ≥ κ1 ‖u‖
2
g

Re 〈Av, v〉g ≥ κ2 ‖v‖
2
W1,2,g

for u ∈ L2(M) and v ∈W1,2(M).

Then, writing

B1 =

(
a 0
0 0

)
, B2 =

(
0 0
0 A

)
,

let

ΠB,g = Γ +B1Γ
∗
gB2 = Γ +B1E

−1Γ∗g̃EB2 = Γ + B̃1Γ
∗
g̃B̃2 = ΠB̃,g̃.

Lashi Bandara (ANU) Quadratic estimates and non-smooth metrics 19 November 2013 20 / 25



Change of Ellipticity

We have that

Re 〈B1u, u〉g ≥ κ1 ‖u‖
2
g

Re 〈B2u, u〉g ≥ κ2 ‖v‖
2
g

for u ∈ L2(M)⊕ 0⊕ 0 ⊃ R(Γ∗g̃) and v ∈ 0⊕L2(M)⊕L2(T∗M) ⊃ R(Γ).

The ellipticity for B̃i in terms of g̃ then becomes

Re
〈
B̃1u, u

〉
g̃
≥ κ1

C
n
2

‖u‖2g̃

Re
〈
B̃2u, u

〉
g̃
≥ κ2

C1+n
2

‖v‖2g̃

for similar u and v.
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The reduction of quadratic estimates

Proposition

Let g and g̃ be two C-close metrics. Then, the quadratic estimates

ˆ ∞
0

∥∥tΠB,g(1 + t2Π2
B,g)−1u

∥∥2
g

dt

t
' ‖u‖2g

is satisfies for all u ∈ R(ΠB,g) if and only if

ˆ ∞
0

∥∥∥tΠB̃,g̃(1 + t2Π2
B,g̃)−1u

∥∥∥2
g̃

dt

t
' ‖u‖2g̃

is satisfied for all u ∈ R(ΠB̃,g̃).
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The Kato square root problem for rough metrics

Theorem

Let g be a rough metric and suppose there exists a C-close metric g̃ that
is smooth, complete and satisfying:

(i) there exists η > 0 such that |Ricg̃|g̃ ≤ η,

(ii) there exists κ > 0 such that inj(M, g̃) ≥ κ,

(iii) ‖g − g̃‖op,g < 1.

Then, D(
√
aS∗gAS) = W1,2(M) and

∥∥√aS∗gASu∥∥g ' ‖u‖W1,2,g for all

u ∈W1,2(M).
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Application to compact manifolds with continuous metrics

Given a C0 metric g, we can always find a C∞ metric g̃ that is C-close for
any C > 1 norm by pasting together Euclidean metrics via a partition of
unity.

Further if we assume that M is compact, then automatically |Ricg̃| ≤ Cg̃

and inj(M, g̃) ≥ κg̃ > 0.

Theorem

Let M be a smooth, compact Riemannian manifold and let g be a C0

metric on M. Then, the quadratic estimate

ˆ ∞
0

∥∥tΠB,g(I + tΠ2
B,g)−1u

∥∥2 dt

t
' ‖u‖2

is satisfied for all u ∈ R(ΠB,g).
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