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Setup

Let M be a smooth, complete Riemannian manifold with metric g,
Levi-Civita connection V, and volume measure dp.
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Setup
Let M be a smooth, complete Riemannian manifold with metric g,
Levi-Civita connection V, and volume measure dpu.

Write div = —V* in L2 and let S = (I, V).

Consider the following uniformly elliptic second order differential operator
La:D(La) C L2(M) — L%(M) defined by
LAu =aS*ASu = —a div(A11Vu) — adiV(Al()u) + aA01Vu + aAoou.

where a and A = (A;;) are L> multiplication operators.
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Setup
Let M be a smooth, complete Riemannian manifold with metric g,
Levi-Civita connection V, and volume measure dpu.

Write div = —V* in L2 and let S = (I, V).

Consider the following uniformly elliptic second order differential operator
La:D(La) C L2(M) — L%(M) defined by

LAu =aS*ASu = —a div(A11Vu) — adiV(Al()u) + aA01Vu + aAoou.

where a and A = (A;;) are L> multiplication operators.

That is, that there exist k1, k2 > 0 such that

Re (av,v) > k1 ||v]|?, v e L?
Re (ASu, Su) > ra(||lul® + |Vul?), u e W2
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The Kato square root problem

The Kato square root problem on manifolds is to determine when the
following holds:
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The Kato square root problem

The Kato square root problem on manifolds is to determine when the
following holds:

{ D(vLa) = WH2(M)

|vVEau|| = [|Vull + lull = [Jullyrz, € WH(M)
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Theorem (B.-Mc [3])

Let (M, g) be a smooth, complete Riemannian manifold |Ric| < C' and
inj(M) > k > 0. Suppose there exist k1, ke > 0 such that

Re (av,v) > k1 ||v]?

Re (ASu, Su) > kg ||ul 3.

for v € L2(M) and u € WH2(M). Then, D(v/La) = D(V) = WH2(M)
and ||v/Laul| ~ = ||ullyrz for all u € WH2(M).
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Stability
Theorem (B.-Mc [3])

Let (M,g) be a smooth, complete Riemannian manifold with |Ric| < C
and inj(M) > k > 0. Suppose that there exist k1, ke > 0 such that

Re (av,v) > k1 ||v]?
Re (ASu, Su) > kg ||ul 3.

for v € L2(M) and u € W'?(M). Then for every n; < k;, whenever
llall < 1, < 19, the estimate

|VEaw = /L au] S Ul + 1Alloc) iy

holds for all u € WY2(M). The implicit constant depends in particular on
A, a and ;.
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Axelsson (Rosén)-Keith-McIntosh framework

In [2], the authors created a first-order framework using the language of
Dirac type operators to study such problems.
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Axelsson (Rosén)-Keith-McIntosh framework
In [2], the authors created a first-order framework using the language of

Dirac type operators to study such problems.

(H1) Let I" be a densely-defined, closed, nilpotent operator on a Hilbert
space 7,

(H2) Suppose that By, B € L(7) such that here exist k1, k2 > 0
satisfying

Re (Byu,u) > k1 ||ul|®>  and  Re (Bav,v) > ko |jv|]?

for u € R(I'*) and v € R(I),
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space 7,
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Axelsson (Rosén)-Keith-McIntosh framework

In [2], the authors created a first-order framework using the language of
Dirac type operators to study such problems.

(H1) Let I" be a densely-defined, closed, nilpotent operator on a Hilbert
space 7,

(H2) Suppose that By, B € L(7) such that here exist k1, k2 > 0
satisfying

Re (Byu,u) > k1 ||ul|®>  and  Re (Bav,v) > ko |jv|]?

for u € R(I'*) and v € R(I),

(H3) The operators By, By satisfy By BoR(I') ¢ N (T') and

Let [ = Bil* By, g =T + T and T =T + T,
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Quadratic estimates and Kato type problems

Proposition
If (H1)-(H3) are satisfied and

o dt
/0 HtHB(I+t2HQB)*1u||2 - = |||

for u € R(Ilp), then
(i) D) ND(Ty) = D(Tlp) = D(/T13), and
(i) [ITull + T pull = [Mpull ~ ||/ Tul

, for all w € D(I1R).
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Quadratic estimates and Kato type problems

Proposition
If (H1)-(H3) are satisfied and

o dt
— = |ull

/0 s (1 + 2Tl

for u € R(Ilp), then
(i) D) ND(Ty) = D(Tlp) = D(/T13), and
(i) [ITull + T pull = [Mpull ~ ||/ Tul

, for all w € D(I1R).

This result has been at the heart of the work of Axelsson (Rosén), Keith,
Mclntosh in [2] and [1], as well as the work of Morris in [5] and B. in [4].
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Set # = L2(M) & (LA(M) & L3(T*M)).
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Set # = L2(M) & (LA(M) & L3(T*M)).

0 0 0 0 0
rg=<S 0),&:(8 0),and32=(0 A).

Define
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Set # = L2(M) & (LA(M) & L3(T*M)).

0 0 0 0 0
rg=<s 0),&:(3 0),and32=(0 A).

._ (0 s o (La 0
— g —
rg_<0 0>andH _<0 *>

Define

Then,
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Set # = L2(M) & (LA(M) & L3(T*M)).

Define
T, = (g 8) B, = (g 8) and By = (8 31)
Then,
ri= (o §) nemi= (70
and

g g(u,0) = (0,u, Vu) and HQBg u,0) = (v/Lau,0).
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Measure notions on manifolds independent of a metric

Definition (Notions of measure)
We say that:

(i) aset A C M is measurable if whenever (U, 1)) is a chart satisfying
UNA# @, then o(UNA) C R" is £-measurable,
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Measure notions on manifolds independent of a metric

Definition (Notions of measure)

We say that:
(i) aset A C M is measurable if whenever (U, ) is a chart satisfying
UNA#d, then p(UNA) C R" is .Z-measurable,
(i) a function f: M — C is measurable if foy=1:9(U) — Cis
Z-measurable for each chart (U, ),
(iii) a tensor field T : M — T(") M is measurable if the coefficients

T/ 7% in each (U, 1)) is measurable,

(iv) a set Z is a null set or set of null measure if requiring
Z(p(UNZ)) =0 for each chart (U, ),
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Measure notions on manifolds independent of a metric

Definition (Notions of measure)

We say that:
(i) aset A C M is measurable if whenever (U, ) is a chart satisfying
UNA#d, then p(UNA) C R" is .Z-measurable,
(i) a function f: M — C is measurable if foy=1:9(U) — Cis
Z-measurable for each chart (U, ),
(iii) a tensor field T : M — T(") M is measurable if the coefficients

T/ 7% in each (U, 1)) is measurable,

(iv) a set Z is a null set or set of null measure if requiring
Z(p(UNZ)) =0 for each chart (U, ),

(v) a property P is valid almost-everywhere if it is valid .Z-a.e. in each
coordinate chart (U, ).

Lashi Bandara (ANU) Quadratic estimates and non-smooth metrics 19 November 2013 9 /25



Rough metrics

Definition (Rough metric)

Suppose that g € T'(T(*9 M) is symmetric and satisfies the following

local comparability condition: for every x € M, there exists a chart (U, )
near x and constant C' > 1 such that

—1
C [ulyrs) < |ulgr) < Clulyesey)

for u € Ty M and for almost-every y € U.
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Properties of the induced measure

(i) 0 <luly(, < oo for 07 ue€ TyM for almost-every 2 € M
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Properties of the induced measure

(i) 0 <uly < oo for 07 u € TyM for almost-every z € M,
(ii) a set A C M is measurable if and only if it is p, measurable
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Properties of the induced measure

(i) 0 <uly < oo for 07 u € TyM for almost-every z € M,
(ii) a set A C M is measurable if and only if it is p, measurable,

(iii) a function f: M — C is measurable if and only if it is z
measurable,

(iv) Z is a set of null measure if and only if pe(Z) =0,
(v) a property P holds a.e. in M if and only if it holds yi,-a.e,

(vi) g is Borel and finite on compact sets.
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If v+ I — M is an absolutely continuous curve then [(t)[y( () is
measurable and summable.
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If v+ I — M is an absolutely continuous curve then [(t)[y( () is
measurable and summable.

As a consequence, we define

dg(z,y) = inf {£s(7) : 7(0) = 2,7(1) =y, 7 abs. cts.}
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If v : I — M is an absolutely continuous curve then |(t)[,(,(s)) is
measurable and summable.

As a consequence, we define

dg(z,y) = inf {£s(7) : 7(0) = 2,7(1) =y, 7 abs. cts.}

The map dg : M x M — R is a pseudo-metric and the induced topology
is coarser than the topology of M.
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LP spaces, Sobolev spaces

LP(T("$) M, g) space defined as f € T'(T("%) M) such that

191 = [ 1)) disl) < .
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LP spaces, Sobolev spaces

LP(T("$) M, g) space defined as f € T'(T("%) M) such that

191 = [ 1)) disl) < .

The Sobolev space W!'P(M, g) is the defined as the set u € C*° N L3(M)
with Vu € C*° N L2(M) under the norm || ||y, = || I, + V-,
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LP spaces, Sobolev spaces

LP(T("$) M, g) space defined as f € T'(T("%) M) such that

191 = [ 1)) disl) < .

The Sobolev space W!'P(M, g) is the defined as the set u € C*° N L3(M)
with Vu € C>° N L?(M) under the norm |- [y, = |- ||, + [IV- ||, - The

space Wo? (M, g) is the the closure of CZ(M) under || |yy1p-
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Divergence

Proposition

The space C (T ™) M) is dense in LP(T (%) M, g). The operators

Vp: C*NLP(M) — C*° NLP(T*M) and V. : CZ(M) — C(T*M)
are closable, densely-defined operators. Furthermore, W'P(M) = D(V,)
and WP = D(V,.).
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Divergence

Proposition

The space C (T ™) M) is dense in LP(T (%) M, g). The operators
Vp: C*NLP(M) — C*° NLP(T*M) and V. : CZ(M) — C(T*M)

are closable, densely-defined operators. Furthermore, W'P(M) = D(V,)
and WP = D(V,.).

For the case p = 2, we define
dng = _VQ*, and diVo’g = —VO*,

which operator theory guarantees are closed, densely-defined.
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Uniformly close geometries

Definition (Uniformly close metrics)

Let g and g be two rough metrics and support there exists C' > 1 such that

-1

O Julgw) < ltulga) < Cluly)

for u € T, M and almost-every z in M. Then, we say that g and g are
uniformly close or C-close. If the inequality holds everywhere, then we say

that the two metrics are C-close everywhere.
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Uniformly close geometries

Definition (Uniformly close metrics)
Let g and g be two rough metrics and support there exists C' > 1 such that

C™ ulga) < ulgo)

for u € T, M and almost-every z in M. Then, we say that g and g are
uniformly close or C-close. If the inequality holds everywhere, then we say
that the two metrics are C-close everywhere.

If g and g are both at least continuous, then C-close and C-close
everywhere are equivalent.
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For any two metrics, there exists a.e. symmetric positive
B € I'(T*M ® TM) such that

82(u,v) = &(B(z)u, v)

for almost-every x.
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For any two metrics, there exists a.e. symmetric positive
B € I'(T*M ® TM) such that

gz (u,v) = 8. (B(x)u,v)
for almost-every x.

The volume measure is then djg = 0 duz where

0 = Vdet B.
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For any two metrics, there exists a.e. symmetric positive
B € I'(T*M ® TM) such that

gz (u,v) = 8. (B(x)u,v)
for almost-every x.

The volume measure is then djg = 0 duz where

0 = Vdet B.

Furthermore,

n
2

g < prg < C2 pug.

w3

o
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Preservation of L? spaces

Let g and g be two C-close rough metrics. Then, the following hold for
the L? spaces:
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Preservation of L? spaces

Let g and g be two C-close rough metrics. Then, the following hold for
the L? spaces:

(i) whenever p € [1,00), LP(T(™%) g) = LP(T(™%) &) with

—(r+s+a; =
o U 8) ul, ;< flull, , < O 5,
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Preservation of L? spaces

Let g and g be two C-close rough metrics. Then, the following hold for
the L? spaces:

(i) whenever p € [1,00), LP(T(™%) g) = LP(T(™%) &) with

—(r+s+a; =
o U 8) ul, ;< flull, , < O 5,

(i) for p = oo, Lo(T ") g) = L°(T("*), §) with

O™ full o < Moo < O llull oz
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Preservation of Sobolev spaces

(i) the Sobolev spaces W'P(M, g) = WP(M, §) and
WoP(M, g) = WP (M, §) with

— 1+£ 14+
0045 ullyin s < lullwrn < CFF Jullygrn g
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Preservation of Sobolev spaces

(i) the Sobolev spaces W'P(M, g) = WP(M, §) and
WoP(M, g) = WP (M, §) with

— 1+£ 14+
O E) g < el < €45 ullyrng

(i) the Sobolev spaces W9P(M, g) = W'P(M, g) and
WP (M, g) = WGP(M, g) with

00 8) Jullygan 5 < lullgary < O™ Jullygang
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Preservation of Sobolev spaces

(i) the Sobolev spaces W'P(M, g) = WP(M, §) and
WoP(M, g) = WP (M, §) with

— 1+£ 14+
O E) g < el < €45 ullyrng

(i) the Sobolev spaces W9P(M, g) = W'P(M, g) and
WP (M, g) = WGP(M, g) with

00 8) Jullygan 5 < lullgary < O™ Jullygang

(iii) the divergence operators satisfy div, = ! divz 0B and
diV()’g =01 diVO’g 0B.
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Reduction of the problem

As before, let 7 = L?(M) & L2(M) @ L*(T* M) with two inner products
(-5+)g and (-, )5 induced by by g and g respectively.
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Reduction of the problem
As before, let 7 = L?(M) & L2(M) @ L*(T* M) with two inner products
(-5+)g and (-, )5 induced by by g and g respectively.

Let S = (I,V5) and

0 0 0 Sy 0 Sz
= * = g * = g
I R ) B )]
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Reduction of the problem

As before, let 7 = L?(M) & L2(M) @ L*(T* M) with two inner products
(-5+)g and (-, )5 induced by by g and g respectively.

Let S = (I,V5) and
0 0 0 Sk 0 S%
_ X _ g x _ g
t= (5 0) =0 F) e )

Let E(u,v,w) = (8u, 6v, 0Bw) so that (u,v), = (Eu,v); for all
u,v € .
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* _ —1*
Then, Fg =F I‘gE.
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Reduction of the problem (cont.)

As before, let a € L>°(M) and A € L>®(L(L*(M) @& L?(T*M)) with
constants k1, kg > 0 such that

Re (au, u), > k1 ||ul2

Re (Av,v), > Ko ||’l)||%v1,27g

for u € L2(M) and v € WH2(M).
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Reduction of the problem (cont.)

As before, let a € L>°(M) and A € L>®(L(L*(M) @& L?(T*M)) with
constants k1, kg > 0 such that

Re (au, u), > k1 ||ul2

Re (Av,v), > Ko ||’l)||%v1,27g

for u € L2(M) and v € WH2(M).

a 0 0 0
Bl_<o 0)’32_(0 A)’

Hpg =T+ BBy =T+ BE 'T{EB, =T + BiI'; B, = ps

Then, writing

let
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Change of Ellipticity

We have that

for u € L2 (M) ©0®0 D R(I'}) and v € 0® L*(M) ® L*(T*M) D R(T).

Lashi Bandara (ANU) Quadratic estimates and non-smooth metrics

19 November 2013

21 /25



Change of Ellipticity

We have that

for u € L2 (M) ©0®0 D R(I'}) and v € 0® L*(M) ® L*(T*M) D R(T).

The ellipticity for B; in terms of g then becomes

5 K1 2
Re <B U > > 2

) > 2l

5 K2 2
Re <Bgu,u>g > o T [v]lz

for similar « and wv.
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The reduction of quadratic estimates

Proposition
Let g and g be two C-close metrics. Then, the quadratic estimates

0 dt
/0 HtHB,g(l + tQHQB’g)_lu”z " ~ ||u||§

is satisfies for all u € R(Ilp ) if and only if

oo
/0 )‘tHB,g(1+t2HZB’g)_1u‘

is satisfied for all u € R(Il ;).
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The Kato square root problem for rough metrics

Theorem

Let g be a rough metric and suppose there exists a C-close metric g that
is smooth, complete and satisfying:

(i) there exists n > 0 such that |Ric§;|g <n,
(ii) there exists k > 0 such that inj(M, g) > &,
(iii) Hg - g“op,g <L

Then, D(,/aSsAS) = WH2(M) and H‘ /aSé“ASqu = ||ully12 4 for all
u € WH2(M).
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Application to compact manifolds with continuous metrics

Given a C” metric g, we can always find a C*® metric § that is C-close for
any C' > 1 norm by pasting together Euclidean metrics via a partition of
unity.
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Further if we assume that M is compact, then automatically |Ricz| < C;
and inj(M, g) > kz > 0.
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Application to compact manifolds with continuous metrics

Given a C” metric g, we can always find a C*® metric § that is C-close for
any C' > 1 norm by pasting together Euclidean metrics via a partition of
unity.

Further if we assume that M is compact, then automatically |Ricz| < C;
and inj(M, g) > kz > 0.

Theorem

Let M be a smooth, compact Riemannian manifold and let g be a C°
metric on M. Then, the quadratic estimate

&0 dt
[ e 0+ e )l 5l

is satisfied for all u € R(Ilp ).
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