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Lie groups

Let G be a Lie group of dimension n and g is Lie algebra.

We let dp denote the left invariant Haar measure.
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Algebraic basis and vectorfields

A set {ai,...,ax} C g is an algebraic basis if we can recover a basis for g
by multi-commutation.

We assume that the {a;} are linearly independent.
Let A; denote the left translation of a;.

The vectorfields {A;} are linearly independent and global.
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Distance

Theorem of Carathéodory-Chow tells us that for any two points x,y € G,
we can find a curve v : [0,1] — G such that

Y(t) = Z P ()A((1) € span{A;(v(1))}.

The length of such a curve then is given by

1 1
)= [ (P a

Define distance d(z,y) as the infimum over the length of all such curves.

The measure du is Borel-regular with respect to d and we consider
(G,d,du) as a measure metric space.
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Sub-Laplacian
Define an associated sub-Laplacian by:

A=-) A7

This is a densely-defined, self-adjoint operator on L2(G).
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We say that a Lie group is nilpotent if

g1=[g,0], 92 =1[9,01], 93 = [g1,02],. ..

is eventually 0. That is, there is a k£ such that g; = 0.

On such spaces, we consider the uniformly elliptic second order operator

Dy =—b>_ AibjA,
1,

where b, b;; € L*>(G).
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The main theorem for nilpotent Lie groups

Theorem (B.-E.-Mc)

Let G be a connected nilpotent and suppose there exist k1, ko > 0 such
that

Reb(z) > k1 and Re/ Zbiinum > @Z | Agul|?
G g i

for almost all x € G and u € H'(G). Then,
(i) D(vVDg) = N2, D(A;) = HY(G), and
(i) |VDaull ~ >%, [|Awul| for all u € HY(G).
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Stability

Theorem (B.-E.-Mc)
Let 0 < n; < r; and suppose that b, bij € L®(G) such that ||b]|ec < 11 and
1(bij)lloo < 72. Then,

— . ) k
IvDau = \/Daull S ([Blloo + | (big)lloc) D Nl Asull,
=1
for u € HY(G) and where

k
DH = (b+ b) Z Ai(bij -+ Bl’j)A]’.

1,j=1
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Operator theory

Procedure in [AKMc]. Let .7 be a Hilbert space.

(H1) The operator I' : D(I') C J# — 5 is closed, densely-defined and
nilpotent (I'? = 0).
(H2) The operators By, By € L(5) satisfy

Re (Biu,u) > k1||ul] whenever u € R(I'™)
Re (Bau,u) > kal|ul| whenever v € R(T)

where k1, k9 > 0 are constants.
(H3) The operators By, By satisfy B;By(R(T')) € N(T) and
Let I'y = B1I'" By, lIg =T+ 15, and Il =T+ I'*.
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Harmonic analysis and Kato square root type estimates

Theorem (Kato square root type estimate)

Suppose that (I', By, Bs) satisfy (H1)-(H3) and
o0
/ [t B(1 + t*TI%)
0

for all uw € R(Ilp) C . Then,

(i) There is a spectral decomposition # = N (Ilg) & Ef & Ey, where
Ei are spectral subspaces and the sum is in general non-orthogonal,
and

(i) D(T) ND(T%) = D(Ilp) = D(,/11%,) with
ITu|| + ||IT pul|| ~ [|[Hpul| =~ | H2Bu|| for all w € D(Ilp).
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Homogeneous conditions

(H4) Let X be a complete, connected metric space and 1 a Borel-regular
measure on X that is doubling. Then set 7% = L2(X,C";dpu).

(H5) The operators B; are matrix-valued pointwise multiplication operators
such that the function =+ B;(x) are L>®°(X, L(CY)).

(H6) For every bounded Lipschitz function £ : X — C, multiplication by &
preserves D(I") and M¢ = [I', {I] is a multiplication operator.
Furthermore, there exists a constant m > 0 such that
IM¢(x)| < m|Lip&(x)| for almost all z € X.

(H7) For each open ball B, we have

/Fudu:O and /F*vdu:()
B B

for all w € D(I") with spt w C B and for all v € D(I'™*) with
spt v C B.
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(H8) -1 (Poincaré hypothesis)
There exists C’ > 0, ¢ > 0 and an operator
Z:D(E) C L2(x,CN) — L2(&,CM) such that D(I1) N R(IT) C D(E)

and
[ u=usp du<0'2/|~u| dn

for all balls B = B(z,r) and u € D(II) N
2 (Coercivity hypothesis)
There exists C' > 0 such that for all v € D(II) N R(II),

IEul| < C/[Mul.

This is slightly different from (H8) in [Bandaral.
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Theorem (B.)

Let X, (T, B, B2) satisfy (H1)-(H8). Then, Ilp satisfies the quadratic
estimate

> 22 \—1, 2 9 2
; 115 (1 + ¢*1Tp)~ ull” — = [lu]

for all u € R(Ilg) C L2(x,CV).
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Geometric setup
Define the bundle W = span {4;} C TG and complexify it.
Equip W with the inner product h(A4;, A;) = &;;.
Equip G with the sub-connection
Vf=AfA"
where AF = A.* € W*.
Equip W with the sub-connection

V(u'd;) = (V) ® A

We have that W = CF and L?(G) @ L2(W) = L2(CF1).
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Operator setup

Define: T': D(T') € L2(G) & L2 (W*) — L2(G) & L2(W*) by
00
e (5 0).

« (0 —div (0 —div
F—(O 0) and H_(V 0),

where we define div = —V*.

Then,

Let B = (bi;). Then, define
b 0 0 0
Bl = (O 0) and BQ = (O B) .
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Proof of the homogeneous problem

Set X =G and # = L%(G) @ L2(W).

(H1) The sub-connection V is densely-defined and closed and so is I'.
Nilpotency is by construction.

(H2) By accretivity assumptions.
(H3) By construction.
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Proof (cont.)

(H4) The measure dy is Borel-regular and the nilpotency of G implies that
it is doubling.

(H5) By assumption.
(H6) It is an easy fact that for all bounded Lipschitz £ : G — C,

Mg ()| = [T, €() ]| = [VE(2)| < kLip&(x)

for for almost all x € G.

(H7) By the left invariance of the measure dpu.
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Proof (cont.)

(H8) -1 The nilpotency of G implies the following Poincaré inequality

/|f—fB|2 dusrzf VA du
B B

for all balls B, and f € C*°(B). See [SC, (P.1), p118].
Define Zu = (Vug, Vug).
-2 The crucial fact needed here is the regularity result [ERS, Lemma 4.2]

which gives
[A:A; FII S IAF]

for f € H2(G) = D(A).
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Inhomogeneous problem

For general Lie groups, we need to consider operators with lower order
terms.

Let b, b;j, ci, di, e € L>°(G). Define the following uniformly elliptic second
order operator

D] =-b Z AibijAju - bz Aic,'u - bz diAiu — beu.
ij=1 =1 =1
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Theorem (B.-E.-Mc)

Let G be a connected Lie group and suppose there exists k1, kg > 0 such
that

Reb(z) > k1,

Re/ (eu—l—ZdAu)u-l—Z czu-l—szAu Aju dp
g

=1 g=il
m
2 (Hull2 +> HAiUI|2>
=1

for almost all x € G and u € H'(G). Then,
() D(vD1) = (I, D(4;) = H'(G), and
(ii) lvDrull = |lul| + >, ||Asul| for all u € HY(G).
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Spaces of exponential growth

(X,d, p) an exponentially locally doubling measure metric space. That is:
there exist x, A > 0 and constant C' > 1 such that

0 < p(B(z,tr)) < CteM u(B(z,r))

forallz e X, r>0andt > 1.
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Changes to (H7) and (H8)

The following (H7) from [Morris]:

(H7) There exist ¢ > 0 such that for all open balls B C X with r <1,

[ v du\gcuw)%uun and \ [ du'swménvn
B B

for all w € D(I"), v € D(I'*) with spt u, spt v C B.
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We introduce the following local (H8):

(H8) -1 (Local Poincaré hypothesis)
There exists C' > 0, ¢ > 0 and an operator
Z:D(Z) C L2(X,CN) — L2(x,CM) such that D(IT) N R(I) C D(Z)
and

[l unfdu< e [ (2 4 o) d
B B

for all balls B = B(z,) and for v € D(II) N R(II).
-2 (Coercivity hypothesis)

There exists C' > 0 such that for all w € D(IT) N R(11),

Eull + [lull < C[TTull.
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Theorem (Morris)

Let X, (T, B, B2) satisfy (H1)-(H8). Then, Ilp satisfies the quadratic
estimate

> 22 \—1, 2 9 2
; 115 (1 + ¢*1Tp)~ ull” — = [lu]

for all u € R(Ilg) C L2(x,CV).
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Setup

Set X = G and /7 = L2(G) & L2(G) & L2(W) = L2(Ck+2).
Let S = (I, V), §* = [T — div].

Let
0 0\ . (0 5 . (0 &
r_<S 0),F _<O O),andH _<S 0).
Let BOQ =e, BlO = (Cl, .,Cm), B()l = (dl, ,dm)tr, Bll = (b’ij)a and
B = (By).

Then, we can write

b 0 0 0
Bl—<0 0) and BQ—(O B)
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Proof

The proofs of (H1)-(H6) are similar to the homogeneous situation.

(H7) The proof is the same as the homogeneous situation except the lower
. 1 .
order term introduces the term p(B)2 ||u| on the right.

(H8) -1 The existence of a local Poincaré inequality is guaranteed by [ER2,
Proposition 2.4]:

/ - fol? du5r2/<|Vf|2+|f\2> s
B B

for all balls B = B(xz,r) and where f € C*(B).
Define Zu = (Vuy, Vug, Vus).
-2 The crucial fact needed here is the regularity result in [ER, Theorem 7.2],
1A Azull? S | Aul® + [|ull?

for u € H3(G) = D(A).
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