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Motivation from index theory

D be a differential operator, seen as an unbounded operator on LZ.
D is Fredholm: ran D closed and ker D and ker D* are finite dimensional.
Index (analytic) of D:

index D = dimker D — dim ker D*.

Invariant, in particular, index D; = index D for continuous deformation of ¢ through
Fredholm operators.

Usually, D determined by geometry : t — D; geometric deformation, i.e., evolving time
slices in spacetime.
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Index formula: relate geometry, topology and boundary.
index D = / “Curvatures related to D" + “Boundary contribution”.

Atiyah-Patodi-Singer (sufficiently nice D, in particular elliptic):

ker(A) + n(A)

“Boundary contribution” = ,
2

A adapted operator to the boundary - determined by D ,
n(A) - measuring spectral asymmetry of A.
Need: boundary condition to make formula work.

Non-local boundary conditions: topologically obstructed for local boundary conditions.
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Motivation: a Euclidean example
Q1 C R3, domain with smooth compact boundary 9Q C Q.

Spin “bundle” AQ = C2.
Representation p(e;)u := o;u, given by Pauli matrices:

01 0 — 1
“1:<1 0)’ 02:(1 0)’ "3:<0

Spin-Dirac operator:

3
Df =1 ple;)dif = —1( 0101f + o202 f + 0303 ).
j=1

3 2
Satisfies: Df = Z Z Ot fie; = Af.

k=1 j=1
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Adapted operator
., with dom(I3,.) = C2(Q) := {u € C() :spt u C Q}

), is symmetric. Define:

]Dmax = DZ? Emin = ]Dc = (]Dz)*

Adapted operator on the boundary: fix v outward pointing normal, {éi}?zl orthonormal
vectors at x € 0S). Then,

2
Aou(z) == p(v)~" Z (p(éi)vgu) (x).
i=1
Elliptic regularity: dom(Ag) = H(9Q;C?).
There exists B € L£(L2(0€); C?)) such that A := Ag + B self-adjoint.
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Boundary conditions
Boundary conditions for I) “live” in:

That is,

u— u| o dom(Pppay) — H(A)

bounded surjection with kernel dom (1), ,).

(Generalised) Atiyah-Patodi-Singer BC:
BAPS = X(—oo0)(A)H2 (00 C?).

Eta-invariant: 7(A) := na(0) where

mls) = Y sgn(A)

A€espec(A)\{0}

(A) = X(—oo0)(A)HZ(0%C?) P X(000)(A)H 2(32C2).
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Rarita-Schwinger Operator
Twisted bundle T*Q @ A Q = C3 @ C2.

Let 1 : AQ — T*Q ® AQ given by
13
W) = —3;ej ® plej)y-

%_Spin bundle given by
4&% Q= (A Q)J— = kerv,

where
V(v @) = p(v)y.
Then,
TQRAQ=1(AQ) EE 4&% Q.

7/30



Induced Dirac operator

3 3 2
]DT*Q(@AQ]K = Z ez a f Z Z a f]k e; & oief.
=1

i=1 j,k=1

Orthogonal projection P% TORAQ — 4&% Q

Rarita-Schwinger is then:

. T*QRAQ ek (P T

Extract boundary adapted operator Arg as before.

@ There is no B such that Ars + B is self-adjoint. @

& Self-adjointness fundamental in the Bar-Ballmann framework. &
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Geometric dictionary

(€, (-, )gs) ~ (M, g) manifold with metric g
AQ ~s A M — M spin bundle
cN ~» B — M, vector bundle of rank V.
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Broad aim
Hermitian vector bundles (&, h¢), (F,h”) — (M, 1) meas. manifold.

Diff op D : C®°(£) — C®(F) ~ DI : C®(F) = C=(€) formal adjoint.l.e.,
Vu € C2(E),v € CX(F),

- t
(D, v) 27 nmy = <U’D U>L2(Ms5:hg)

Define: Dypax := (DT)*7 Dumin := m

Understand all closed extensions of Dy, sitting in Dyax. l.e., control

dOm(DmaX)/dom(Dmin) .

OM # @& want map v : dom(Dyax) — H built out of boundary trace map, bounded

surjection with ker(y) = dom(D,i,). Compute topology of I purely in terms of
data on OM.
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General setup

(A1) M is a manifold with compact boundary oM C M;
(A2) 7 is an interior pointing co-vectorfield along OM;

(A3) p is a smooth volume measure on M and v is the induced smooth volume measure
on OM;

(A4) (£,h%), (F,h7) — M are Hermitian vector bundles over M;
(A5) D : C®(M;E) — C®(M; F) is a first-order elliptic differential operator;

(A6) D and DT (formal adjoint of D) are complete (i.e., C(M; &) dense in
dom(Dyyax)).

Consequence: reduce to cylinder Z 1) : [0,T)) x OM.

T > 0 determined by (A1)-(A6).
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Adapted boundary operator
A adapted boundary operator to D if:

-1

oa(x, &) = op(x, ()" o op(x,§).

Exists and are elliptic differential operators of order 1.

Unique up to an operator of order zero.
Ellipticity of D = for all (z,£) € OM x T*OM and £ # 0,

spec(oa(z,&))NR = 2.

Theorem of Shubin: there exists w € [0,7/2), R > 0, C' < oo such that
spec(A) C S, U Br(0) and

Clic—A) M <G,

for all ¢ ¢ S, U Br(0).
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e Discrete spectrum, generally non-orthogonal generalised eigenspaces.

e Admissible spectral cut r € R: the line [, :== {C € C: Re { =} is not in the
spectrum of A.

e For such r, there exist w, € [0,7/2) such that A, := A — r is invertible w,

bi-sectorial.
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K¢ —A) Y <0

e Theorem of Grubb:x®(A,) are YDO projectors of order zero.
e Space: H(A) == x (A )H2 (OM; E) ® x* (A )H 2 (OM;E).
: 2 v 2 + 2
Norm: ) = I~ (Al + I (Al .
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Theorem 1: Maximal domain and the H(A) space
(i) u= ulgy : CO(M;E) — C°(OM; E) extends uniquely to a bounded surjection
dom(Dpax) — H(A).
(i) The space

dom(Dyax) N HL(M; E) = {u € dom(Dumax) : ul g, € H%(a/\/l;é')}

(ii) The L%(OM; &) inner product extends to a perfect pairing

(-} : (A) x I(—A*) — C.
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(iv) For all u € dom(Dyax) and v € dom(DlTnax),

<Dmaxu) U>L2 (M;F) — <u7 DInaxU>L2(M;S)

(v) Higher regularity:
dom(Dyax) N Hk+1(./\/l; £)

loc

= {u € dom(Dyax) : Du € Hk (M; F)

loc

and x (A (ul ) € HEE(OM:€) |

(ul gpq> 90 ”|8M>H(

A)xTI(—A%) *

1
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Boundary conditions

B C H(A) is a boundary condition for D if it is a closed, linear subspace.

Associated operator domains:

dom(DB,max) = {'LL € d0m<DmaX) : U"BM < B}
dom(Dp) = {u € dom(Duax) N Hi, (OM; E) : ul 04 € B} -

Similarly for the formal adjoint DT with A replaced by A.
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DB max closed and between D,in and Dyax.
D, closed extension of Dy, then
B :={u|y,, : u € dom(D,)}
boundary condition and D, = D max.
B C Hz(dM; &) boundary condition if and only if D = D nax.

Adjoint boundary condition BT so that (Dp)* = DLT:

Bt = {U € F(A) : (u, 0f V) iaycrioan =0 Yu € B} .
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e Classical pseudo-differential projector P of order zero (not necessarily orthogonal in

L2), the space
—————H(A)
B:= PH}(OM;E)

is called a pseudo-local boundary condition.

e BC H%(OM; £) a local boundary condition if there exists a smooth sub-bundle
E' C EgM such that

—T————H®)
B =H2(0M;E')
A boundary condition B is elliptic if:

dom(D g max) € Hoo(M;E) and  dom(Dh, ) ¢ HL (M;F)
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Theorem 2: Pseudo-local boundary conditions )
—1 —HA)
Given a pseudo-local boundary condition B = PH%(ﬁM;E) , the following are
equivalent:

(i) B an elliptic boundary condition and B = PH%(GM;E),
(ii) there exists an admissible spectral cut » € R and

P—xT(A,): L2(OM;E) — L2(OM;E)

is Fredholm,

(iii) there exists an admissible spectral cut » € R and
P —xt(A,) : L2(OM; E) = L2(OM;E)

is an elliptic classical pseudo of order zero.

In particular, if Dpu is smooth, then u is smooth up to the boundary.
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APS in the general setting

Given an invertible adapted boundary operator A, the boundary condition
Baps = X~ (A)HZ (9M; )

is elliptic and pseudo-local.

If M is compact, then Dp, ¢ is Fredholm.

Index formula? - Big open question.
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Ingredients of the proof

Geometric reduction to the “model” operator Dy = 0¢(0; + A):

Lemma (Lemma 4.1 (Bar-Ballmann))

On the cylinder Zy r),
D =040+ A+ Ry),

for any adapted boundary operator A for D. The remainder term Ry is a WDO of order
at most one and its coefficients depend smoothly on t. Moreover,

| Revllizoae) S tlAullizoae) + llulliz@ase)

for u € C>*(OM;E).
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Associated sectorial operators and functional calculus

Let sgn(A,) == x(A;) — x™(Ar).

Define |A,| := A, sgn(A,).

|A,| is invertible w,-sectorial.

UDOdifferential calculus: dom(|A,|) = dom(|A,|*) = HY(OM;E).

Theorem of Auscher-Mclntosh-Nahmod:|A,| has an H* functional calculus. l.e.,

> dt
| IsA D = . va e L2oase)

for some (and equivalently, all) holomorphic 0 # 1 : S;, — C with some C,a > 0
such that

[¥(¢)] < Cmin {|¢|*,[¢]7} .
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Role of the H* calculus
Assume M :=[0,00) x OM, D := 0¢(d; + A). Extension operator
& : C(OM;E) — dom(Dyax)

Evi=e Ay e UMy ety gy = xE(A)w.
Show:
1601 = 16012 aqniey + IDEVIZaqiey < Nolldga, = No—I%, + ol

Inhomogeneous part:
2 T —tA] 2
€V T2 M) :/0 le™"! |UHL2(3M;5) dt
RO S S VR | dt
:/0 th‘A|2€ t| |‘A| 21}”%42(6./\/[;5)7
_1
~ A2 vlEzoane) = 10154 ey
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Firstly,
D&v_ = o0(0p + A)Ev_

= 00(0; + |Alsgn(A))x ™ (A)Ev-
= 00(0; — |Al)e 1y
= —200|Ale1Aly_
Then, .
|\D£v_y\igw;8) :4/0 HaoyA\e—ﬂAlv_HiQ(aM;g) dt
dt

O Ll Al AL
:/O Ht?‘A|2e 7f| |‘A|2’U_||I2_IQ(6M’€) 7

~ 1 2 2
= |||A|2U*||L2(8M;$) Jv ||H2(8M &)
Combining with D&vy = 0¢(0; + A)vy = 0, obtain:
2 2 _
1601 S 10-12 ey 104125 ey = [0
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Maximal regularity
Banach-valued Cauchy problem: f € L2(Z[07p];8),

W (t; f) + [A W (t; f) = f(t)
lim W (t; f) = 0.

Solution given by:
t
mqaf>—-/“eu8nArf@>d&
0

Key estimate - maximal regularity:
r 2 P 2
[ 10 s DRsaniert+ [ ALV D R aree,

p
SAHﬂWémmy
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Define:

t
So,ru(t) :/ e~ (A (A u(s) ds
0

- / om0y~ (4, u(s) ds
Let (Cpu)(s) = u(p — s),
(i) (3 +A,) So, = 1.

(i)) So, : HX(Zjg 3 €) = H(Z)g 1: €) bounded.
(iii) whenever u(p) = 0 (or spt u C Z|g ),

(I—Sor (9 +Ar) Ju=e 1 (xT(A,)u(0)).
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Future program

Using current viewpoint as a template:

o General order case [Magnus Goffeng (Lund), Hemanth Saratchandran (Adelaide)]
Seeley (1965) gives a “Czech” space: mixed-order Sobolev spaces via Calderén
projectors.

e Lipschitz boundary [Andreas Rosén (Gothenburg) and Magnus Goffeng (Lund)]

Quadratic estimates to be proved directly - methods from the Kato square root

problem:
dyadic decomposition, off-diagonal estimates (automatic for first-order), reduce to
local T'(b) theorem and Carleson measure estimate.
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Nonlinear problems - 1P estimates

oo o
p _ —t)4| _ L o—tjal,p 4
60l = [ [ el duons de= [ et .

Leads to: Besov space data on the boundary.
- 1-1 _1
Guess: Hy, := x 7 (A)Bp " (OM;E) @ xT(A)B, ) (OM; E).

n-invariants for non-Dirac type operators

Recall:

nals) = ) Sg‘ri(j\) :

Aespec(A)\{0}

na(0) defined? s+ na(s) analytic?
H®°-functional calculus and harmonic analysis: alternative perspective of
Atiyah-Patodi-Singer.
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e Lorentzian manifolds with spacelike boundary

Extension operator: wave propagation operator.
Bisectoriality is a problem: need strip type or similar.
Key idea: identify the right function spaces.
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