First-order elliptic boundary value problems beyond self-adjoint adapted boundary operators

Lashi Bandara (joint with Christian Bär)

> Institut für Mathematik Universität Potsdam

> > 31 July 2018

M Riemannian Spin manifold, smooth compact boundary Σ ,

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

Induced Dirac operator

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

Induced Dirac operator

$${D\hspace{-.05cm}/}_{\mathcal{W}} = \begin{pmatrix} {D\hspace{-.05cm}/} & T^* \\ T & {D\hspace{-.05cm}/}_{\mathrm{RS}} \end{pmatrix}.$$

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

Induced Dirac operator

$${D\hspace{-.05cm}/}_{\mathcal{W}} = \begin{pmatrix} {D\hspace{-.05cm}/} & T^* \\ T & {D\hspace{-.05cm}/}_{\mathrm{RS}} \end{pmatrix}.$$

Natural questions:

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

Induced Dirac operator

$${D\hspace{-.05cm}/}_{\mathcal{W}} = \begin{pmatrix} {D\hspace{-.05cm}/} & T^* \\ T & {D\hspace{-.05cm}/}_{\mathrm{RS}} \end{pmatrix}.$$

Natural questions:

⋆ Boundary conditions?

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

Induced Dirac operator

$${D\hspace{-.05cm}/}_{\mathcal{W}} = \begin{pmatrix} {D\hspace{-.05cm}/} & T^* \\ T & {D\hspace{-.05cm}/}_{\mathrm{RS}} \end{pmatrix}.$$

Natural questions:

⋆ Boundary conditions? Ellipticity?

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

Induced Dirac operator

$${D\hspace{-.05cm}/}_{\mathcal{W}} = \begin{pmatrix} {D\hspace{-.05cm}/} & T^* \\ T & {D\hspace{-.05cm}/}_{\mathrm{RS}} \end{pmatrix}.$$

Natural questions:

⋆ Boundary conditions? Ellipticity? Self-adjointness?

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

Induced Dirac operator

$${D\hspace{-.05cm}/}_{\mathcal{W}} = \begin{pmatrix} {D\hspace{-.05cm}/} & T^* \\ T & {D\hspace{-.05cm}/}_{\mathrm{RS}} \end{pmatrix}.$$

Natural questions:

★ Boundary conditions? Ellipticity? Self-adjointness? Regularity of solutions?

M Riemannian Spin manifold, smooth compact boundary Σ ,

$$\mathcal{W} := \mathrm{T} M \otimes \Delta M \cong \Delta M \stackrel{\perp}{\oplus} \Delta_{\frac{3}{2}} M.$$

Induced Dirac operator

$${D\hspace{-.05cm}/}_{\mathcal{W}} = \begin{pmatrix} {D\hspace{-.05cm}/} & T^* \\ T & {D\hspace{-.05cm}/}_{\mathrm{RS}} \end{pmatrix}.$$

Natural questions:

- * Boundary conditions? Ellipticity? Self-adjointness? Regularity of solutions?
- Fredholmness and index theorems?

Boundary adapted operator A_{RS} to $D\!\!\!/_{RS}$ on $\Delta_{\frac{3}{2}}\Sigma:=\Delta_{\frac{3}{2}}M|_{\Sigma}$.

Boundary adapted operator A_{RS} to D_{RS} on $\Delta_{\frac{3}{2}}\Sigma := \Delta_{\frac{3}{2}}M|_{\Sigma}$.

Principal symbol:

$$\sigma_{\mathcal{A}_{RS}}(x,\xi) = \sigma_{\mathcal{D}_{RS}}(x,\tau(x))^{-1} \circ \sigma_{\mathcal{D}_{RS}}(x,\xi).$$

Boundary adapted operator A_{RS} to D_{RS} on $\Delta_{\frac{3}{2}}\Sigma := \Delta_{\frac{3}{2}}M|_{\Sigma}$.

Principal symbol:

$$\sigma_{\mathcal{A}_{RS}}(x,\xi) = \sigma_{\mathcal{D}_{RS}}(x,\tau(x))^{-1} \circ \sigma_{\mathcal{D}_{RS}}(x,\xi).$$

Fundamental assumption in the Bär-Ballmann framework [BB12]:

 A_{RS} is a symmetric operator.

Boundary adapted operator A_{RS} to D_{RS} on $\Delta_{\frac{3}{2}}\Sigma := \Delta_{\frac{3}{2}}M|_{\Sigma}$.

Principal symbol:

$$\sigma_{\mathcal{A}_{\mathrm{RS}}}(x,\xi) = \sigma_{\not \!\! D_{\mathrm{RS}}}(x,\tau(x))^{-1} \, \circ \, \sigma_{\not \!\! D_{\mathrm{RS}}}(x,\xi).$$

Fundamental assumption in the Bär-Ballmann framework [BB12]:

 $A_{\rm RS}$ is a symmetric operator.

Boundary value problems for $partial_{RS}$ "live" in:

Boundary adapted operator A_{RS} to D_{RS} on $\Delta_{\frac{3}{2}}\Sigma := \Delta_{\frac{3}{2}}M|_{\Sigma}$.

Principal symbol:

$$\sigma_{\mathcal{A}_{\mathrm{RS}}}(x,\xi) = \sigma_{\not D_{\mathrm{RS}}}(x,\tau(x))^{-1} \, \circ \, \sigma_{\not D_{\mathrm{RS}}}(x,\xi).$$

Fundamental assumption in the Bär-Ballmann framework [BB12]:

 $A_{\rm RS}$ is a symmetric operator.

Boundary value problems for $partial_{RS}$ "live" in:

$$\check{H}(\mathbf{A}_{\mathrm{RS}}) := \chi_{(-\infty,0]}(\mathbf{A}_{\mathrm{RS}})\mathbf{H}^{\frac{1}{2}}(\mathbf{A}_{\frac{3}{2}}\Sigma) \quad \bigoplus \quad \chi_{(0,\infty)}(\mathbf{A}_{\mathrm{RS}})\mathbf{H}^{-\frac{1}{2}}(\mathbf{A}_{\frac{3}{2}}\Sigma),$$

Boundary adapted operator A_{RS} to D_{RS} on $\Delta_{\frac{3}{2}}\Sigma := \Delta_{\frac{3}{2}}M|_{\Sigma}$.

Principal symbol:

$$\sigma_{\mathcal{A}_{\mathrm{RS}}}(x,\xi) = \sigma_{\not \!\! D_{\mathrm{RS}}}(x,\tau(x))^{-1} \, \circ \, \sigma_{\not \!\! D_{\mathrm{RS}}}(x,\xi).$$

Fundamental assumption in the Bär-Ballmann framework [BB12]:

 A_{RS} is a symmetric operator.

Boundary value problems for p_{RS} "live" in:

$$\check{H}(\mathbf{A}_{\mathrm{RS}}) := \chi_{(-\infty,0]}(\mathbf{A}_{\mathrm{RS}})\mathbf{H}^{\frac{1}{2}}(\not\Delta_{\frac{3}{2}}\Sigma) \quad \bigoplus \quad \chi_{(0,\infty)}(\mathbf{A}_{\mathrm{RS}})\mathbf{H}^{-\frac{1}{2}}(\not\Delta_{\frac{3}{2}}\Sigma),$$

lacktriangle Rarita-Schwinger \mathcal{D}_{RS} does not give rise to a symmetric A_{RS} .

(A1) M is a manifold with compact boundary $\Sigma = \partial M$;

```
(A1) M is a manifold with compact boundary \Sigma = \partial M; (A2) \tau is an interior co-vectorfield along \partial M;
```

- (A1) M is a manifold with compact boundary $\Sigma = \partial M$;
- (A2) τ is an interior co-vectorfield along ∂M ;
- (A3) μ is a smooth volume measure on M and ν is the induced smooth volume measure on Σ ;

- (A1) M is a manifold with compact boundary $\Sigma = \partial M$;
- (A2) τ is an interior co-vectorfield along ∂M ;
- (A3) μ is a smooth volume measure on M and ν is the induced smooth volume measure on Σ ;
- (A4) $(\mathcal{E}, \mathbf{h}^{\mathcal{E}}), (\mathcal{F}, \mathbf{h}^{\mathcal{F}}) \to M$ are Hermitian vector bundles over M;

- (A1) M is a manifold with compact boundary $\Sigma = \partial M$;
- (A2) τ is an interior co-vectorfield along ∂M ;
- (A3) μ is a smooth volume measure on M and ν is the induced smooth volume measure on Σ ;
- (A4) $(\mathcal{E}, \mathbf{h}^{\mathcal{E}}), (\mathcal{F}, \mathbf{h}^{\mathcal{F}}) \to M$ are Hermitian vector bundles over M;
- (A5) $D: \mathbb{C}^{\infty}(\mathcal{E}) \to \mathbb{C}^{\infty}(\mathcal{F})$ is a first-order elliptic differential operator;

- (A1) M is a manifold with compact boundary $\Sigma = \partial M$;
- (A2) τ is an interior co-vectorfield along ∂M ;
- (A3) μ is a smooth volume measure on M and ν is the induced smooth volume measure on Σ :
- (A4) $(\mathcal{E}, h^{\mathcal{E}}), (\mathcal{F}, h^{\mathcal{F}}) \to M$ are Hermitian vector bundles over M;
- (A5) $D: C^{\infty}(\mathcal{E}) \to C^{\infty}(\mathcal{F})$ is a first-order elliptic differential operator;
- (A6) D and D^* are complete (i.e., $C_c^{\infty}(E)$ dense in $\mathcal{D}(D_{\max})$).

- (A1) M is a manifold with compact boundary $\Sigma = \partial M$;
- (A2) τ is an interior co-vectorfield along ∂M ;
- (A3) μ is a smooth volume measure on M and ν is the induced smooth volume measure on Σ ;
- (A4) $(\mathcal{E}, \mathbf{h}^{\mathcal{E}}), (\mathcal{F}, \mathbf{h}^{\mathcal{F}}) \to M$ are Hermitian vector bundles over M;
- (A5) $D: C^{\infty}(\mathcal{E}) \to C^{\infty}(\mathcal{F})$ is a first-order elliptic differential operator;
- (A6) D and D^* are complete (i.e., $C_c^{\infty}(E)$ dense in $\mathcal{D}(D_{\max})$).

Consequence: reduce to cylinder $Z_{[0,T)}:[0,T)\times\Sigma$.

- (A1) M is a manifold with compact boundary $\Sigma = \partial M$;
- (A2) τ is an interior co-vectorfield along ∂M ;
- (A3) μ is a smooth volume measure on M and ν is the induced smooth volume measure on Σ ;
- (A4) $(\mathcal{E}, \mathbf{h}^{\mathcal{E}}), (\mathcal{F}, \mathbf{h}^{\mathcal{F}}) \to M$ are Hermitian vector bundles over M;
- (A5) $D: C^{\infty}(\mathcal{E}) \to C^{\infty}(\mathcal{F})$ is a first-order elliptic differential operator;
- (A6) D and D^* are complete (i.e., $C_c^{\infty}(E)$ dense in $\mathcal{D}(D_{\max})$).

Consequence: reduce to cylinder $Z_{[0,T)}:[0,T)\times\Sigma$.

T > 0 determined by (A1)-(A6).

A adapted boundary operator to D if:

$$\sigma_A(x,\xi) = \sigma_D(x,\tau(x))^{-1} \circ \sigma_D(x,\xi).$$

A adapted boundary operator to D if:

$$\sigma_A(x,\xi) = \sigma_D(x,\tau(x))^{-1} \circ \sigma_D(x,\xi).$$

• Exists and are elliptic differential operators of order 1.

A adapted boundary operator to D if:

$$\sigma_A(x,\xi) = \sigma_D(x,\tau(x))^{-1} \circ \sigma_D(x,\xi).$$

- Exists and are elliptic differential operators of order 1.
- Unique up to an operator of order zero.

A adapted boundary operator to D if:

$$\sigma_A(x,\xi) = \sigma_D(x,\tau(x))^{-1} \circ \sigma_D(x,\xi).$$

- Exists and are elliptic differential operators of order 1.
- Unique up to an operator of order zero.
- Discrete spectrum, generally non-orthogonal eigenspaces.

A adapted boundary operator to D if:

$$\sigma_A(x,\xi) = \sigma_D(x,\tau(x))^{-1} \circ \sigma_D(x,\xi).$$

- Exists and are elliptic differential operators of order 1.
- Unique up to an operator of order zero.
- Discrete spectrum, generally non-orthogonal eigenspaces.

Admissible cut $r \in \mathbb{R}$: the line $l_r := \{ \zeta \in \mathbb{C} : \text{Re } \zeta = r \}$ is *not* in the spectrum of A.

Ellipticity $\operatorname{spec}(\sigma_{\mathbf{A}}(x,\xi)) \cap i\mathbb{R} = \emptyset, \ \forall (x,\xi) \in \Sigma \times \mathrm{T}^*\Sigma.$

 $\mathsf{Ellipticity} \qquad \quad \mathsf{spec}(\sigma_{\mathsf{A}}(x,\xi)) \cap \imath \mathbb{R} = \varnothing \text{, } \forall (x,\xi) \in \Sigma \times \mathrm{T}^*\Sigma.$

Theorem of Shubin in [Shu01]: there exists $\omega_r \in [0, \pi/2)$ such that $A_r := A - r$ is ω_r bi-sectorial.

 $\text{Ellipticity} \qquad \operatorname{spec}(\sigma_{\mathbf{A}}(x,\xi)) \cap \imath \mathbb{R} = \varnothing \text{, } \forall (x,\xi) \in \Sigma \times \mathrm{T}^*\Sigma.$

Theorem of Shubin in [Shu01]: there exists $\omega_r \in [0, \pi/2)$ such that $A_r := A - r$ is ω_r bi-sectorial.

Theorem of Grubb in [Gru12] (c.f. also Seeley in [See67]): spectral projectors $\chi^{\pm}(A_r)$ are ΨDOs of order zero.

Ellipticity
$$\operatorname{spec}(\sigma_{\mathbf{A}}(x,\xi)) \cap i\mathbb{R} = \emptyset$$
, $\forall (x,\xi) \in \Sigma \times \mathrm{T}^*\Sigma$.

Theorem of Shubin in [Shu01]: there exists $\omega_r \in [0, \pi/2)$ such that $A_r := A - r$ is ω_r bi-sectorial.

Theorem of Grubb in [Gru12] (c.f. also Seeley in [See67]): spectral projectors $\chi^{\pm}(A_r)$ are Ψ DOs of order zero.

Space:
$$\check{H}(A) := \chi^-(A_r) \mathrm{H}^{\frac{1}{2}}(E_\Sigma) \oplus \chi^+(A_r) \mathrm{H}^{-\frac{1}{2}}(E_\Sigma).$$

Ellipticity
$$\operatorname{spec}(\sigma_{\mathbf{A}}(x,\xi)) \cap i\mathbb{R} = \emptyset$$
, $\forall (x,\xi) \in \Sigma \times \mathrm{T}^*\Sigma$.

Theorem of Shubin in [Shu01]: there exists $\omega_r \in [0, \pi/2)$ such that $A_r := A - r$ is ω_r bi-sectorial.

Theorem of Grubb in [Gru12] (c.f. also Seeley in [See67]): spectral projectors $\chi^{\pm}(A_r)$ are Ψ DOs of order zero.

Space:
$$\check{H}(A) := \chi^-(A_r) \mathrm{H}^{\frac{1}{2}}(E_\Sigma) \oplus \chi^+(A_r) \mathrm{H}^{-\frac{1}{2}}(E_\Sigma).$$

Norm:
$$\|u\|_{\check{H}(A)}^2 := \|\chi^-(A_r)u\|_{\dot{H}^{\frac{1}{2}}}^2 + \|\chi^+(A_r)u\|_{\dot{H}^{-\frac{1}{2}}}^2.$$

Theorem 1: Maximal domains and $\check{H}(A)$, $\check{H}(\tilde{A})$ spaces

(i) $C_c^{\infty}(E)$ is dense in $\mathcal{D}(D_{\max})$ and $\mathcal{D}((D^*)_{\max})$ with respect to corresponding graph norms.

- (i) $C_c^\infty(E)$ is dense in $\mathcal{D}(D_{\max})$ and $\mathcal{D}((D^*)_{\max})$ with respect to corresponding graph norms.
- (ii) The restriction maps $C_c^\infty(E) \to C_c^\infty(E_\Sigma)$ and $C_c^\infty(F) \to C_c^\infty(F_\Sigma)$ given by $u \mapsto u|_{\Sigma}$ extend uniquely to surjective bounded linear maps $\mathcal{D}(D_{\max}) \to \check{H}(A)$ and $\mathcal{D}((D^*)_{\max}) \to \check{H}(\tilde{A})$.

- (i) $C_c^\infty(E)$ is dense in $\mathcal{D}(D_{\max})$ and $\mathcal{D}((D^*)_{\max})$ with respect to corresponding graph norms.
- (ii) The restriction maps $C_c^\infty(E) \to C_c^\infty(E_\Sigma)$ and $C_c^\infty(F) \to C_c^\infty(F_\Sigma)$ given by $u \mapsto u|_{\Sigma}$ extend uniquely to surjective bounded linear maps $\mathcal{D}(D_{\max}) \to \check{H}(A)$ and $\mathcal{D}((D^*)_{\max}) \to \check{H}(\tilde{A})$.
- (iii) The spaces

$$\begin{split} \mathcal{D}(D_{\max}) \cap \mathrm{H}^1_{\mathrm{loc}}(E_{\Sigma}) &= \left\{ u \in \mathcal{D}(D_{\max}) : u|_{\Sigma} \in \mathrm{H}^{\frac{1}{2}}(E_{\Sigma}) \right\} \\ \mathcal{D}((D^*)_{\max}) \cap \mathrm{H}^1_{\mathrm{loc}}(F_{\Sigma}) &= \left\{ u \in \mathcal{D}((D^*)_{\max}) : u|_{\Sigma} \in \mathrm{H}^{\frac{1}{2}}(F_{\Sigma}) \right\}. \end{split}$$

- (i) $\mathrm{C}^\infty_\mathrm{c}(E)$ is dense in $\mathcal{D}(D_\mathrm{max})$ and $\mathcal{D}((D^*)_\mathrm{max})$ with respect to corresponding graph norms.
- (ii) The restriction maps $\mathrm{C}^\infty_\mathrm{c}(E) \to \mathrm{C}^\infty_\mathrm{c}(E_\Sigma)$ and $\mathrm{C}^\infty_\mathrm{c}(F) \to \mathrm{C}^\infty_\mathrm{c}(F_\Sigma)$ given by $u \mapsto u|_\Sigma$ extend uniquely to surjective bounded linear maps $\mathcal{D}(D_\mathrm{max}) \to \check{H}(A)$ and $\mathcal{D}((D^*)_\mathrm{max}) \to \check{H}(\tilde{A})$.
- (iii) The spaces

$$\mathcal{D}(D_{\max}) \cap \mathrm{H}^{1}_{\mathrm{loc}}(E_{\Sigma}) = \left\{ u \in \mathcal{D}(D_{\max}) : u|_{\Sigma} \in \mathrm{H}^{\frac{1}{2}}(E_{\Sigma}) \right\}$$
$$\mathcal{D}((D^{*})_{\max}) \cap \mathrm{H}^{1}_{\mathrm{loc}}(F_{\Sigma}) = \left\{ u \in \mathcal{D}((D^{*})_{\max}) : u|_{\Sigma} \in \mathrm{H}^{\frac{1}{2}}(F_{\Sigma}) \right\}.$$

(iv) For all $u \in \mathcal{D}(D_{\max})$ and $v \in \mathcal{D}((D^*)_{\max})$, $\langle D_{\max}u,v\rangle_{\mathrm{L}^2(F)} - \langle u,(D^*)_{\max}v\rangle_{\mathrm{L}^2(E)} = -\left\langle \sigma_0u|_{\Sigma},v|_{\Sigma}\right\rangle_{\mathrm{L}^2(F_{\Sigma})}.$

- (i) $\mathrm{C}_\mathrm{c}^\infty(E)$ is dense in $\mathcal{D}(D_\mathrm{max})$ and $\mathcal{D}((D^*)_\mathrm{max})$ with respect to corresponding graph norms.
- (ii) The restriction maps $C_c^\infty(E) \to C_c^\infty(E_\Sigma)$ and $C_c^\infty(F) \to C_c^\infty(F_\Sigma)$ given by $u \mapsto u|_\Sigma$ extend uniquely to surjective bounded linear maps $\mathcal{D}(D_{\max}) \to \check{H}(A)$ and $\mathcal{D}((D^*)_{\max}) \to \check{H}(\tilde{A})$.
- (iii) The spaces

$$\mathcal{D}(D_{\max}) \cap \mathrm{H}^{1}_{\mathrm{loc}}(E_{\Sigma}) = \left\{ u \in \mathcal{D}(D_{\max}) : u|_{\Sigma} \in \mathrm{H}^{\frac{1}{2}}(E_{\Sigma}) \right\}$$
$$\mathcal{D}((D^{*})_{\max}) \cap \mathrm{H}^{1}_{\mathrm{loc}}(F_{\Sigma}) = \left\{ u \in \mathcal{D}((D^{*})_{\max}) : u|_{\Sigma} \in \mathrm{H}^{\frac{1}{2}}(F_{\Sigma}) \right\}.$$

(iv) For all $u \in \mathcal{D}(D_{\max})$ and $v \in \mathcal{D}((D^*)_{\max})$, $\langle D_{\max}u,v\rangle_{\mathrm{L}^2(F)} - \langle u,(D^*)_{\max}v\rangle_{\mathrm{L}^2(E)} = -\left\langle \sigma_0u|_{\Sigma},v|_{\Sigma}\right\rangle_{\mathrm{L}^2(F_{\Sigma})}.$

(v) Higher regularity:

$$\begin{split} \mathcal{D}(D_{\max}) \cap \mathrm{H}^{\mathrm{k}+1}_{\mathrm{loc}}(E) \\ &= \{ u \in \mathcal{D}(D_{\max}) : Du \in \mathrm{H}^{\mathrm{k}}_{\mathrm{loc}}(F) \text{ and } \chi^{+}(A_{r})(u|_{\Sigma}) \in \mathrm{H}^{\mathrm{k}+\frac{1}{2}}(E_{\Sigma}) \}. \end{split}$$

A closed linear subspace $B \subset \check{H}(A)$ is called a boundary condition for D.

A closed linear subspace $B \subset \check{H}(A)$ is called a boundary condition for D. Associated operator domains:

$$\mathcal{D}(D_{B,\max}) = \left\{ u \in \mathcal{D}(D_{\max}) : u|_{\Sigma} \in B \right\}$$
$$\mathcal{D}(D_B) = \left\{ u \in \mathcal{D}(D_{\max}) \cap \mathrm{H}^1_{\mathrm{loc}}(E_{\Sigma}) : u|_{\Sigma} \in B \right\},$$

A closed linear subspace $B \subset \check{H}(A)$ is called a boundary condition for D. Associated operator domains:

$$\mathcal{D}(D_{B,\max}) = \left\{ u \in \mathcal{D}(D_{\max}) : u|_{\Sigma} \in B \right\}$$
$$\mathcal{D}(D_B) = \left\{ u \in \mathcal{D}(D_{\max}) \cap \mathrm{H}^1_{\mathrm{loc}}(E_{\Sigma}) : u|_{\Sigma} \in B \right\},$$

and similarly for the formal adjoint D^* with A replaced by \tilde{A} .

• For boundary condition B, the operator D_B closed and between D_{cc} (on $C_{cc}^{\infty}(E)$) and D_{\max} .

A closed linear subspace $B \subset \check{H}(A)$ is called a boundary condition for D. Associated operator domains:

$$\mathcal{D}(D_{B,\max}) = \left\{ u \in \mathcal{D}(D_{\max}) : u|_{\Sigma} \in B \right\}$$
$$\mathcal{D}(D_B) = \left\{ u \in \mathcal{D}(D_{\max}) \cap \mathrm{H}^1_{\mathrm{loc}}(E_{\Sigma}) : u|_{\Sigma} \in B \right\},$$

- For boundary condition B, the operator D_B closed and between D_{cc} (on $C_{cc}^{\infty}(E)$) and D_{\max} .
- D_c closed extension of D_{cc} , then $B:=\{u|_{\Sigma}:u\in\mathcal{D}(D_c)\}$ is a boundary condition and $D_c=D_{B,\max}$.

A closed linear subspace $B \subset \check{H}(A)$ is called a boundary condition for D. Associated operator domains:

$$\mathcal{D}(D_{B,\max}) = \left\{ u \in \mathcal{D}(D_{\max}) : u|_{\Sigma} \in B \right\}$$
$$\mathcal{D}(D_B) = \left\{ u \in \mathcal{D}(D_{\max}) \cap \mathrm{H}^1_{\mathrm{loc}}(E_{\Sigma}) : u|_{\Sigma} \in B \right\},$$

- For boundary condition B, the operator D_B closed and between D_{cc} (on $C_{cc}^{\infty}(E)$) and D_{\max} .
- D_c closed extension of D_{cc} , then $B:=\left\{u\big|_{\Sigma}:u\in\mathcal{D}(D_c)\right\}$ is a boundary condition and $D_c=D_{B,\max}$.
- Boundary condition $B \subset H^{\frac{1}{2}}(E_{\Sigma})$ if and only if $D_B = D_{B,\max}$.

A closed linear subspace $B \subset \check{H}(A)$ is called a boundary condition for D. Associated operator domains:

$$\mathcal{D}(D_{B,\max}) = \left\{ u \in \mathcal{D}(D_{\max}) : u|_{\Sigma} \in B \right\}$$
$$\mathcal{D}(D_B) = \left\{ u \in \mathcal{D}(D_{\max}) \cap \mathrm{H}^1_{\mathrm{loc}}(E_{\Sigma}) : u|_{\Sigma} \in B \right\},$$

- For boundary condition B, the operator D_B closed and between D_{cc} (on $C_{cc}^{\infty}(E)$) and D_{\max} .
- D_c closed extension of D_{cc} , then $B:=\left\{u\big|_{\Sigma}:u\in\mathcal{D}(D_c)\right\}$ is a boundary condition and $D_c=D_{B,\max}$.
- Boundary condition $B \subset H^{\frac{1}{2}}(E_{\Sigma})$ if and only if $D_B = D_{B,\max}$.
- Adjoint boundary condition B^{ad} so that $D_B^{\mathrm{ad}} = D_{B^{\mathrm{ad}}}$:

$$B^{\mathrm{ad}} := \left\{ v \in \check{H}(-\tilde{A}) : \langle \sigma_0 u, v \rangle_{L^2(F_{\Sigma})} = 0 \quad \forall u \in B \right\}.$$

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ boundary condition is called *elliptic* if there exists an admissible cut $r \in \mathbb{R}$ and:

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ boundary condition is called *elliptic* if there exists an admissible cut $r \in \mathbb{R}$ and:

(i) W_{\pm} , V_{\pm} are mutually complementary subspaces such that

$$V_{\pm} \oplus W_{\pm} = \chi^{\pm}(A_r) L^2(E_{\Sigma}),$$

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ boundary condition is called *elliptic* if there exists an admissible cut $r \in \mathbb{R}$ and:

(i) W_{\pm} , V_{\pm} are mutually complementary subspaces such that

$$V_{\pm} \oplus W_{\pm} = \chi^{\pm}(A_r) L^2(E_{\Sigma}),$$

(ii) W_{\pm} are finite dimensional with $W_{\pm},W_{\pm}^*\subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$, and

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ boundary condition is called *elliptic* if there exists an admissible cut $r \in \mathbb{R}$ and:

(i) W_{\pm} , V_{\pm} are mutually complementary subspaces such that

$$V_{\pm} \oplus W_{\pm} = \chi^{\pm}(A_r) L^2(E_{\Sigma}),$$

- (ii) W_\pm are finite dimensional with $W_\pm,W_\pm^*\subset \mathrm{H}^{\frac{1}{2}}(E_\Sigma)$, and
- (iii) $g:V_-\to V_+$ bounded linear map with $g(V_-^{\frac12})\subset V_+^{\frac12}$ and $g^*((V_+^*)^{\frac12})\subset (V_-^*)^{\frac12}$

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ boundary condition is called *elliptic* if there exists an admissible cut $r \in \mathbb{R}$ and:

(i) W_{\pm} , V_{\pm} are mutually complementary subspaces such that

$$V_{\pm} \oplus W_{\pm} = \chi^{\pm}(A_r) L^2(E_{\Sigma}),$$

- (ii) W_{\pm} are finite dimensional with $W_{\pm},W_{\pm}^*\subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$, and
- (iii) $g:V_-\to V_+$ bounded linear map with $g(V_-^{\frac12})\subset V_+^{\frac12}$ and $g^*((V_+^*)^{\frac12})\subset (V_-^*)^{\frac12}$ such that

$$B = W_+ \oplus \left\{ v + gv : v \in V_-^{\frac{1}{2}} \right\}.$$

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ be a subspace, then the following are equivalent:

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ be a subspace, then the following are equivalent:

(i) B a boundary condition and $B^{\operatorname{ad}} \subset \operatorname{H}^{\frac{1}{2}}(F_{\Sigma})$,

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ be a subspace, then the following are equivalent:

- (i) B a boundary condition and $B^{\operatorname{ad}} \subset \operatorname{H}^{\frac{1}{2}}(F_{\Sigma})$,
- (ii) the definition is satisfied for any admissible spectral cut $r \in \mathbb{R}$,

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ be a subspace, then the following are equivalent:

- (i) B a boundary condition and $B^{\mathrm{ad}} \subset \mathrm{H}^{\frac{1}{2}}(F_{\Sigma})$,
- (ii) the definition is satisfied for any admissible spectral cut $r \in \mathbb{R}$,
- (iii) B an elliptic boundary condition.

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ be a subspace, then the following are equivalent:

- (i) B a boundary condition and $B^{\operatorname{ad}} \subset \operatorname{H}^{\frac{1}{2}}(F_{\Sigma})$,
- (ii) the definition is satisfied for any admissible spectral cut $r \in \mathbb{R}$,
- (iii) B an elliptic boundary condition.

Elliptic boundary condition B for $D \iff B^{\operatorname{ad}}$ elliptic boundary condition for D^*

 $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ be a subspace, then the following are equivalent:

- (i) B a boundary condition and $B^{\mathrm{ad}} \subset \mathrm{H}^{\frac{1}{2}}(F_{\Sigma})$,
- (ii) the definition is satisfied for any admissible spectral cut $r \in \mathbb{R}$,
- (iii) B an elliptic boundary condition.

Elliptic boundary condition B for $D \iff B^{\operatorname{ad}}$ elliptic boundary condition for D^* and

$$\sigma_0^*(B^{\mathrm{ad}}) = W_-^* \oplus \left\{ u - g^*u : u \in (V_+^*)^{\frac{1}{2}} \right\}.$$

Pseudo-local and local boundary conditions

• Classical pseudo-differential projector *P* of order zero (not necessarily orthogonal), the space

$$B = P(\mathrm{H}^{\frac{1}{2}}(E_{\Sigma}))$$

is called a pseudo-local boundary condition.

Pseudo-local and local boundary conditions

• Classical pseudo-differential projector *P* of order zero (not necessarily orthogonal), the space

$$B = P(H^{\frac{1}{2}}(E_{\Sigma}))$$

is called a pseudo-local boundary condition.

• Boundary condition $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ a local boundary condition if there exists a sub-bundle $E' \subset E_{\Sigma}$ such that

$$B = \mathrm{H}^{\frac{1}{2}}(E').$$

Given a pseudo-local boundary condition $B=P(\mathrm{H}^{\frac{1}{2}}(E_{\Sigma}))$, the following are equivalent:

Given a pseudo-local boundary condition $B=P(\mathrm{H}^{\frac{1}{2}}(E_{\Sigma}))$, the following are equivalent:

(i) B an elliptic boundary condition,

Given a pseudo-local boundary condition $B=P(\mathrm{H}^{\frac{1}{2}}(E_{\Sigma}))$, the following are equivalent:

- (i) B an elliptic boundary condition,
- (ii) for admissible cut $r \in \mathbb{R}$, the operator

$$P - \chi^+(A_r) : L^2(E_\Sigma) \to L^2(E_\Sigma)$$

is Fredholm,

Given a pseudo-local boundary condition $B=P(\mathrm{H}^{\frac{1}{2}}(E_{\Sigma}))$, the following are equivalent:

- (i) B an elliptic boundary condition,
- (ii) for admissible cut $r \in \mathbb{R}$, the operator

$$P - \chi^+(A_r) : L^2(E_\Sigma) \to L^2(E_\Sigma)$$

is Fredholm.

(iii) for admissible cut $r \in \mathbb{R}$, the operator

$$P - \chi^+(A_r) : L^2(E_\Sigma) \to L^2(E_\Sigma)$$

is elliptic classical pseudo of order zero.

Given a pseudo-local boundary condition $B=P(\mathrm{H}^{\frac{1}{2}}(E_{\Sigma}))$, the following are equivalent:

- (i) B an elliptic boundary condition,
- (ii) for admissible cut $r \in \mathbb{R}$, the operator

$$P - \chi^+(A_r) : L^2(E_\Sigma) \to L^2(E_\Sigma)$$

is Fredholm,

(iii) for admissible cut $r \in \mathbb{R}$, the operator

$$P - \chi^+(A_r) : L^2(E_\Sigma) \to L^2(E_\Sigma)$$

is elliptic classical pseudo of order zero.

In particular, if $D_B u$ is smooth, then u is smooth up to the boundary.

Ingredients of the proof

Geometric reduction to the "model" operator $D_0 = \sigma_0(\partial_t + A)$:

Ingredients of the proof

Geometric reduction to the "model" operator $D_0 = \sigma_0(\partial_t + A)$:

Lemma (Lemma 4.1 in [BB12])

On the cylinder $Z_{[0,T)}$,

$$D = \sigma_t(\partial_t + B + R_t),$$

$$D^* = -\sigma_t^*(\partial_t + \tilde{B} + \tilde{R}_t),$$

for any pair of adapted boundary operators B and \tilde{B} to D and D^* . Remainder terms R_t and \tilde{R}_t are ΨDO 's of order at most one, their coefficients depend smoothly on t, and

$$\|R_t u\|_{\mathrm{L}^2(\Sigma)} \lesssim t \|B u\|_{\mathrm{L}^2(\Sigma)} + \|u\|_{\mathrm{L}^2(\Sigma)},$$
 and $\|\tilde{R}_t v\|_{\mathrm{L}^2(\Sigma)} \lesssim t \|\tilde{B} v\|_{\mathrm{L}^2(\Sigma)} + \|v\|_{\mathrm{L}^2(\Sigma)}.$

for $u \in C^{\infty}(E_{\Sigma})$ and $v \in C^{\infty}(F_{\Sigma})$.

• Let $sgn(A_r) := \chi^+(A_r) - \chi^-(A_r)$.

- Let $sgn(A_r) := \chi^+(A_r) \chi^-(A_r)$.
- Define $|A_r| := A_r \operatorname{sgn}(A_r)$.

- Let $sgn(A_r) := \chi^+(A_r) \chi^-(A_r)$.
- Define $|A_r| := A_r \operatorname{sgn}(A_r)$.
- $|A_r|$ is invertible ω_r -sectorial.

- Let $sgn(A_r) := \chi^+(A_r) \chi^-(A_r)$.
- Define $|A_r| := A_r \operatorname{sgn}(A_r)$.
- $|A_r|$ is invertible ω_r -sectorial.
- Ψ DOdifferential calculus: $\mathcal{D}(|A_r|) = \mathcal{D}(|A_r|^*)$.

- Let $sgn(A_r) := \chi^+(A_r) \chi^-(A_r)$.
- Define $|A_r| := A_r \operatorname{sgn}(A_r)$.
- $|A_r|$ is invertible ω_r -sectorial.
- Ψ DOdifferential calculus: $\mathcal{D}(|A_r|) = \mathcal{D}(|A_r|^*)$.
- Theorem of Auscher-McIntosh-Nahmod from [AMN97]: $|A_r|$ has a H^{∞} functional calculus.

Associated sectorial operators and functional calculus

- Let $sgn(A_r) := \chi^+(A_r) \chi^-(A_r)$.
- Define $|A_r| := A_r \operatorname{sgn}(A_r)$.
- $|A_r|$ is invertible ω_r -sectorial.
- Ψ DOdifferential calculus: $\mathcal{D}(|\mathbf{A}_r|) = \mathcal{D}(|\mathbf{A}_r|^*)$.
- Theorem of Auscher-McIntosh-Nahmod from [AMN97]: $|A_r|$ has a H^{∞} functional calculus.
- Define $\mathrm{H}^1_\mathrm{D}(E) = \mathcal{D}(D_\mathrm{max}) \cap \mathrm{H}^1_\mathrm{loc}(E)$ with

Associated sectorial operators and functional calculus

- Let $sgn(A_r) := \chi^+(A_r) \chi^-(A_r)$.
- Define $|A_r| := A_r \operatorname{sgn}(A_r)$.
- $|A_r|$ is invertible ω_r -sectorial.
- Ψ DOdifferential calculus: $\mathcal{D}(|A_r|) = \mathcal{D}(|A_r|^*)$.
- Theorem of Auscher-McIntosh-Nahmod from [AMN97]: $|A_r|$ has a H^{∞} functional calculus.
- Define $\mathrm{H}^1_\mathrm{D}(E) = \mathcal{D}(D_\mathrm{max}) \cap \mathrm{H}^1_\mathrm{loc}(E)$ with

$$||u||_{\mathrm{H}_{\mathrm{D}}^{1}}^{2} := ||\eta u||_{\mathrm{H}^{1}}^{2} + ||Du||^{2} + ||u||,$$

where η is a compactly supported cutoff near the boundary.

For $\theta \in (\omega_r, \pi/2)$ fixed, there exists an inner product $\langle \cdot, \cdot \rangle_{N,\theta}$ such that $|A_r|$ is m- θ -accretive and for which the estimate

$$\begin{split} \|(\partial_t + \mathbf{A})u\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 &\simeq \|u'\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 + \|Au\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 \\ &\qquad - \operatorname{Re} \left\langle |A_r| \operatorname{sgn}(A_r) \ u_0, u_0 \right\rangle_{N,\theta} - r \|u_0\|_{N,\theta}^2, \end{split}$$

holds for $u \in C_c^{\infty}(Z_{[0,\infty)}; E)$ where $u_0 = u|_{\Sigma}$.

For $\theta \in (\omega_r, \pi/2)$ fixed, there exists an inner product $\langle \cdot, \cdot \rangle_{N,\theta}$ such that $|A_r|$ is m- θ -accretive and for which the estimate

$$\begin{split} \|(\partial_t + \mathbf{A})u\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 &\simeq \|u'\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 + \|Au\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 \\ &\qquad - \operatorname{Re} \langle |A_r| \operatorname{sgn}(A_r) \ u_0, u_0 \rangle_{N,\theta} - r \|u_0\|_{N,\theta}^2, \end{split}$$

holds for $u \in \mathrm{C}^\infty_\mathrm{c}(Z_{[0,\infty)}; E)$ where $u_0 = u|_{\Sigma}$.

Consequences:

For $\theta \in (\omega_r, \pi/2)$ fixed, there exists an inner product $\langle \cdot, \cdot \rangle_{N,\theta}$ such that $|A_r|$ is m- θ -accretive and for which the estimate

$$\begin{split} \|(\partial_t + \mathbf{A})u\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 &\simeq \|u'\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 + \|Au\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 \\ &\qquad - \operatorname{Re} \langle |A_r| \operatorname{sgn}(A_r) \ u_0, u_0 \rangle_{N,\theta} - r \|u_0\|_{N,\theta}^2, \end{split}$$

holds for $u \in \mathrm{C}^\infty_\mathrm{c}(Z_{[0,\infty)}; E)$ where $u_0 = u|_{\Sigma}$.

Consequences:

• $\chi^+(A_r)u_0 = 0 \implies ||u||_{\mathrm{H}^1_D} \lesssim ||u||_{D_0}$,

For $\theta \in (\omega_r, \pi/2)$ fixed, there exists an inner product $\langle \cdot, \cdot \rangle_{N,\theta}$ such that $|A_r|$ is m- θ -accretive and for which the estimate

$$\begin{split} \|(\partial_t + \mathbf{A})u\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 &\simeq \|u'\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 + \|Au\|_{\mathrm{L}^2(Z_{[0,\infty)})}^2 \\ &\qquad - \operatorname{Re} \langle |A_r| \operatorname{sgn}(A_r) \ u_0, u_0 \rangle_{N,\theta} - r \|u_0\|_{N,\theta}^2, \end{split}$$

holds for $u \in \mathrm{C}^\infty_\mathrm{c}(Z_{[0,\infty)}; E)$ where $u_0 = u|_{\Sigma}$.

Consequences:

- $\chi^+(A_r)u_0 = 0 \implies ||u||_{\mathrm{H}^1_D} \lesssim ||u||_{D_0}$,
- relative boundedness of D and D_0 .

$$\|(\partial_t + \mathbf{A})u\|_{\star}^2 = \|u'\|_{\star}^2 + \|\mathbf{A}u\|_{\star}^2 + \operatorname{Re}\langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u, u\rangle_{\star}' + r\langle u, u\rangle_{\star}' + \operatorname{Re}(\langle u', |\mathbf{A}_r| \operatorname{sgn}(A_r)u\rangle_{\star} - \langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u', u\rangle_{\star})$$

$$\|(\partial_t + \mathbf{A})u\|_{\star}^2 = \|u'\|_{\star}^2 + \|\mathbf{A}u\|_{\star}^2 + \operatorname{Re}\langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u, u\rangle_{\star}' + r\langle u, u\rangle_{\star}'$$
$$+ \operatorname{Re}(\langle u', |\mathbf{A}_r| \operatorname{sgn}(A_r)u\rangle_{\star} - \langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u', u\rangle_{\star})$$

(i) Via Similarity Theorem due to Callier–Grabowski–Le Merdy (c.f. [Haa06] by Haase), there exists $\langle \cdot, \cdot \rangle_{\theta}$ so that $|A_r|$ is m- θ -accretive.

$$\|(\partial_t + \mathbf{A})u\|_{\star}^2 = \|u'\|_{\star}^2 + \|\mathbf{A}u\|_{\star}^2 + \operatorname{Re}\langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u, u\rangle_{\star}' + r\langle u, u\rangle_{\star}'$$
$$+ \operatorname{Re}(\langle u', |\mathbf{A}_r| \operatorname{sgn}(A_r)u\rangle_{\star} - \langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u', u\rangle_{\star})$$

- (i) Via Similarity Theorem due to Callier–Grabowski–Le Merdy (c.f. [Haa06] by Haase), there exists $\langle \cdot, \cdot \rangle_{\theta}$ so that $|A_r|$ is m- θ -accretive.
- (ii) Define $\|\cdot\|_{N,\theta}^2:=\|\chi^+(\mathbf{A}_r)\cdot\|_{\theta}^2+\|\chi^-(\mathbf{A}_r)\cdot\|_{\theta}^2.$

$$\|(\partial_t + \mathbf{A})u\|_{\star}^2 = \|u'\|_{\star}^2 + \|\mathbf{A}u\|_{\star}^2 + \operatorname{Re}\langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u, u\rangle_{\star}' + r\langle u, u\rangle_{\star}'$$
$$+ \operatorname{Re}(\langle u', |\mathbf{A}_r| \operatorname{sgn}(A_r)u\rangle_{\star} - \langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u', u\rangle_{\star})$$

- (i) Via Similarity Theorem due to Callier–Grabowski–Le Merdy (c.f. [Haa06] by Haase), there exists $\langle \cdot, \cdot \rangle_{\theta}$ so that $|A_r|$ is m- θ -accretive.
- (ii) Define $\|\cdot\|_{N\,\theta}^2 := \|\chi^+(\mathbf{A}_r)\cdot\|_{\theta}^2 + \|\chi^-(\mathbf{A}_r)\cdot\|_{\theta}^2$.
- (iii) $|\mathbf{A}_r|$ is still m- θ -accretive with respect to $\langle\cdot,\cdot\rangle_{N,\theta}$.

$$\|(\partial_t + \mathbf{A})u\|_{\star}^2 = \|u'\|_{\star}^2 + \|\mathbf{A}u\|_{\star}^2 + \operatorname{Re}\langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u, u\rangle_{\star}' + r\langle u, u\rangle_{\star}'$$
$$+ \operatorname{Re}(\langle u', |\mathbf{A}_r| \operatorname{sgn}(A_r)u\rangle_{\star} - \langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u', u\rangle_{\star})$$

- (i) Via Similarity Theorem due to Callier–Grabowski–Le Merdy (c.f. [Haa06] by Haase), there exists $\langle \cdot, \cdot \rangle_{\theta}$ so that $|A_r|$ is m- θ -accretive.
- (ii) Define $\|\cdot\|_{N,\theta}^2:=\|\chi^+(\mathbf{A}_r)\cdot\|_{\theta}^2+\|\chi^-(\mathbf{A}_r)\cdot\|_{\theta}^2.$
- (iii) $|A_r|$ is still m- θ -accretive with respect to $\langle \cdot, \cdot \rangle_{N,\theta}$.
- (iv) $\chi^{\pm}(\mathbf{A}_r)$ are self-adjoint in $\langle\cdot,\cdot\rangle_{N,\theta}$ as is $\mathrm{sgn}(\mathbf{A}_r)$.

$$\|(\partial_t + \mathbf{A})u\|_{\star}^2 = \|u'\|_{\star}^2 + \|\mathbf{A}u\|_{\star}^2 + \operatorname{Re}\langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u, u\rangle_{\star}' + r\langle u, u\rangle_{\star}'$$
$$+ \operatorname{Re}(\langle u', |\mathbf{A}_r| \operatorname{sgn}(A_r)u\rangle_{\star} - \langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u', u\rangle_{\star})$$

- (i) Via Similarity Theorem due to Callier–Grabowski–Le Merdy (c.f. [Haa06] by Haase), there exists $\langle \cdot, \cdot \rangle_{\theta}$ so that $|A_r|$ is m- θ -accretive.
- (ii) Define $\|\cdot\|_{N,\theta}^2:=\|\chi^+(\mathbf{A}_r)\cdot\|_{\theta}^2+\|\chi^-(\mathbf{A}_r)\cdot\|_{\theta}^2.$
- (iii) $|A_r|$ is still m- θ -accretive with respect to $\langle \cdot, \cdot \rangle_{N,\theta}$.
- (iv) $\chi^{\pm}(\mathbf{A}_r)$ are self-adjoint in $\langle \cdot, \cdot \rangle_{N,\theta}$ as is $\mathrm{sgn}(\mathbf{A}_r)$.
- (v) $a(u,v) = \langle |\mathbf{A}_r|u,v\rangle_{N,\theta}$ is m- θ -accretive form.

$$\|(\partial_t + \mathbf{A})u\|_{\star}^2 = \|u'\|_{\star}^2 + \|\mathbf{A}u\|_{\star}^2 + \operatorname{Re}\langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u, u\rangle_{\star}' + r\langle u, u\rangle_{\star}'$$
$$+ \operatorname{Re}(\langle u', |\mathbf{A}_r| \operatorname{sgn}(A_r)u\rangle_{\star} - \langle |\mathbf{A}_r| \operatorname{sgn}(A_r)u', u\rangle_{\star})$$

- (i) Via Similarity Theorem due to Callier–Grabowski–Le Merdy (c.f. [Haa06] by Haase), there exists $\langle \cdot, \cdot \rangle_{\theta}$ so that $|A_r|$ is m- θ -accretive.
- (ii) Define $\|\cdot\|_{N,\theta}^2 := \|\chi^+(\mathbf{A}_r)\cdot\|_{\theta}^2 + \|\chi^-(\mathbf{A}_r)\cdot\|_{\theta}^2$.
- (iii) $|A_r|$ is still m- θ -accretive with respect to $\langle \cdot, \cdot \rangle_{N,\theta}$.
- (iv) $\chi^{\pm}(A_r)$ are self-adjoint in $\langle \cdot, \cdot \rangle_{N,\theta}$ as is $\operatorname{sgn}(A_r)$.
- (v) $a(u,v) = \langle |A_r|u,v\rangle_{N\theta}$ is m- θ -accretive form.

$$\langle u', |A_r| \operatorname{sgn}(A_r) u \rangle_{N,\theta} - \langle |A_r| \operatorname{sgn}(A_r) u', u \rangle_{N,\theta}$$

= $a(\operatorname{sgn}(A_r) u', u)^{\operatorname{conj}} - a(u, \operatorname{sgn}(A_r) u') \in \operatorname{Im} \mathbb{R}$

Higher regularity

Banach-valued Cauchy problem: $f \in \mathrm{L}^2(Z_{[0,\rho]},E)$,

$$\partial_t W(t;f) + |A_r|W(t;f) = f(t), \qquad \lim_{t \to 0} W(t;f) = 0.$$

Higher regularity

Banach-valued Cauchy problem: $f \in \mathrm{L}^2(Z_{[0,\rho]},E)$,

$$\partial_t W(t;f) + |A_r|W(t;f) = f(t), \qquad \lim_{t \to 0} W(t;f) = 0.$$

Solution given by:

$$W(t;f) = \int_0^t e^{-(t-s)|A_r|} f(s) \ ds.$$

Higher regularity

Banach-valued Cauchy problem: $f \in \mathrm{L}^2(Z_{[0,\rho]},E)$,

$$\partial_t W(t;f) + |A_r|W(t;f) = f(t), \qquad \lim_{t \to 0} W(t;f) = 0.$$

Solution given by:

$$W(t;f) = \int_0^t e^{-(t-s)|A_r|} f(s) \ ds.$$

Define:

$$S_{0,r}u(t) = \int_0^t e^{-(t-s)|A_r|} \sigma_0^{-1} \chi^+(A_r) u(s) \ ds$$
$$- \int_t^\rho e^{-(s-t)|A_r|} \sigma_0^{-1} \chi^-(A_r) u(s) \ ds$$

Let $(C_{\rho}u)(s) = u(\rho - s)$,

(i)
$$S_{0,r}u(t) = W(t; \sigma_0^{-1}\chi^+(A_r)u) - W(\rho - t; \sigma_0^{-1}\chi^-(A_r)C_\rho u)$$

Let $(C_{\rho}u)(s) = u(\rho - s)$,

(i)
$$S_{0,r}u(t) = W(t; \sigma_0^{-1}\chi^+(A_r)u) - W(\rho - t; \sigma_0^{-1}\chi^-(A_r)C_\rho u)$$

(ii)
$$\chi^+(A_r)(S_{0,r}u)(0) = \chi^-(A_r)(S_{0,r}u)(\rho) = 0.$$

Let
$$(C_{\rho}u)(s) = u(\rho - s)$$
,

(i)
$$S_{0,r}u(t) = W(t; \sigma_0^{-1}\chi^+(A_r)u) - W(\rho - t; \sigma_0^{-1}\chi^-(A_r)C_\rho u)$$

(ii)
$$\chi^+(A_r)(S_{0,r}u)(0) = \chi^-(A_r)(S_{0,r}u)(\rho) = 0.$$

(iii)
$$D_{0,r}S_{0,r}=\mathrm{I}$$
, where $D_{0,r}=\sigma_0(\partial_t+\mathrm{A}_r)$.

Let
$$(C_{\rho}u)(s) = u(\rho - s)$$
,

(i)
$$S_{0,r}u(t) = W(t; \sigma_0^{-1}\chi^+(A_r)u) - W(\rho - t; \sigma_0^{-1}\chi^-(A_r)C_\rho u)$$

- (ii) $\chi^+(A_r)(S_{0,r}u)(0) = \chi^-(A_r)(S_{0,r}u)(\rho) = 0.$
- (iii) $D_{0,r}S_{0,r}=\mathrm{I}$, where $D_{0,r}=\sigma_0(\partial_t+\mathrm{A}_r)$.
- (iv) $S_{0,r}: \mathrm{H}^{\mathbf{k}}(Z_{[0,\rho]}, E) \to \mathrm{H}^{\mathbf{k}+1}(Z_{[0,\rho]}, E)$ bounded.

Let
$$(C_{\rho}u)(s) = u(\rho - s)$$
,

- (i) $S_{0,r}u(t) = W(t; \sigma_0^{-1}\chi^+(A_r)u) W(\rho t; \sigma_0^{-1}\chi^-(A_r)C_\rho u)$
- (ii) $\chi^+(A_r)(S_{0,r}u)(0) = \chi^-(A_r)(S_{0,r}u)(\rho) = 0.$
- (iii) $D_{0,r}S_{0,r}=I$, where $D_{0,r}=\sigma_0(\partial_t+A_r)$.
- (iv) $S_{0,r}: \mathrm{H}^{\mathrm{k}}(Z_{[0,\rho]},E) \to \mathrm{H}^{\mathrm{k}+1}(Z_{[0,\rho]},E)$ bounded.
- (v) $D_{0,r}: \mathrm{H}^{\mathrm{k}+1}(Z_{[0,\rho]}, E; B_0) \to \mathrm{H}^{\mathrm{k}}(Z_{[0,\rho]}, E)$ isomorphism, where $B_0 = \chi^-(A_r) \mathrm{H}^{\frac{1}{2}}(E_\Sigma) \oplus \chi^+(A_r) \mathrm{H}^{\frac{1}{2}}(E_\Sigma)$

Let
$$(C_{\rho}u)(s) = u(\rho - s)$$
,

- (i) $S_{0,r}u(t) = W(t; \sigma_0^{-1}\chi^+(A_r)u) W(\rho t; \sigma_0^{-1}\chi^-(A_r)C_\rho u)$
- (ii) $\chi^+(A_r)(S_{0,r}u)(0) = \chi^-(A_r)(S_{0,r}u)(\rho) = 0.$
- (iii) $D_{0,r}S_{0,r}=I$, where $D_{0,r}=\sigma_0(\partial_t+A_r)$.
- (iv) $S_{0,r}: \mathrm{H}^{\mathrm{k}}(Z_{[0,\rho]},E) \to \mathrm{H}^{\mathrm{k}+1}(Z_{[0,\rho]},E)$ bounded.
- (v) $D_{0,r}: \mathrm{H}^{k+1}(Z_{[0,\rho]}, E; B_0) \to \mathrm{H}^k(Z_{[0,\rho]}, E)$ isomorphism, where $B_0 = \chi^-(A_r) \mathrm{H}^{\frac{1}{2}}(E_\Sigma) \oplus \chi^+(A_r) \mathrm{H}^{\frac{1}{2}}(E_\Sigma)$
- (vi) $(I S_{0,r}D_{0,r})u = e^{-t|A_r|}(\chi^+(A_r)u(0))$ whenever $\chi^-(A_r)(u(\rho)) = 0$,

Let
$$(C_{\rho}u)(s) = u(\rho - s)$$
,

(i)
$$S_{0,r}u(t) = W(t; \sigma_0^{-1}\chi^+(A_r)u) - W(\rho - t; \sigma_0^{-1}\chi^-(A_r)C_\rho u)$$

- (ii) $\chi^+(A_r)(S_{0,r}u)(0) = \chi^-(A_r)(S_{0,r}u)(\rho) = 0.$
- (iii) $D_{0,r}S_{0,r} = I$, where $D_{0,r} = \sigma_0(\partial_t + A_r)$.
- (iv) $S_{0,r}: \mathrm{H}^{\mathrm{k}}(Z_{[0,\rho]}, E) \to \mathrm{H}^{\mathrm{k}+1}(Z_{[0,\rho]}, E)$ bounded.
- (v) $D_{0,r}: \mathrm{H}^{k+1}(Z_{[0,\rho]}, E; B_0) \to \mathrm{H}^k(Z_{[0,\rho]}, E)$ isomorphism, where $B_0 = \chi^-(A_r) H^{\frac{1}{2}}(E_{\Sigma}) \oplus \chi^+(A_r) H^{\frac{1}{2}}(E_{\Sigma})$
- (vi) $(I S_{0,r}D_{0,r})u = e^{-t|A_r|}(\chi^+(A_r)u(0))$ whenever $\chi^-(A_r)(u(\rho)) = 0.$

Key estimate:

$$\int_0^\rho \|\partial_t W(t;f)\|_{\mathrm{L}^2(E_\Sigma)}^2 dt + \int_0^\rho \||A_r|W(t;f)\|_{\mathrm{L}^2(E_\Sigma)}^2 \lesssim \int_0^\rho \|f(t)\|_{\mathrm{L}^2(E_\Sigma)}^2.$$

Prove: $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ and $B^{\mathrm{ad}} \subset \mathrm{H}^{\frac{1}{2}}(F_{\Sigma})$ implies B elliptic.

Prove: $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ and $B^{\mathrm{ad}} \subset \mathrm{H}^{\frac{1}{2}}(F_{\Sigma})$ implies B elliptic.

Lemma

 $W_+ = \mathcal{R}(\chi^+(A_r)) \cap B$ and $W_-^* = \mathcal{R}(\chi^-(A_r^*)) \cap \sigma_0^* B^{\mathrm{ad}}$ are finite dimensional subspaces of $\mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$

Prove: $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ and $B^{\mathrm{ad}} \subset \mathrm{H}^{\frac{1}{2}}(F_{\Sigma})$ implies B elliptic.

Lemma

 $W_+ = \mathcal{R}(\chi^+(A_r)) \cap B$ and $W_-^* = \mathcal{R}(\chi^-(A_r^*)) \cap \sigma_0^* B^{\mathrm{ad}}$ are finite dimensional subspaces of $\mathrm{H}^{\frac{1}{2}}(E_\Sigma)$ and $\chi^-(A_r)B$ and $\chi^+(A_r^*)\sigma_0^* B^{\mathrm{ad}}$ are closed subspaces of $\mathrm{H}^{\frac{1}{2}}(E_\Sigma)$.

Prove: $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ and $B^{\mathrm{ad}} \subset \mathrm{H}^{\frac{1}{2}}(F_{\Sigma})$ implies B elliptic.

Lemma

$$W_+ = \mathcal{R}(\chi^+(A_r)) \cap B$$
 and $W_-^* = \mathcal{R}(\chi^-(A_r^*)) \cap \sigma_0^* B^{\mathrm{ad}}$ are finite dimensional subspaces of $\mathrm{H}^{\frac{1}{2}}(E_\Sigma)$ and $\chi^-(A_r)B$ and $\chi^+(A_r^*)\sigma_0^* B^{\mathrm{ad}}$ are closed subspaces of $\mathrm{H}^{\frac{1}{2}}(E_\Sigma)$.

Key estimate:

$$||u||_{\mathbf{H}^{\frac{1}{2}}} \simeq ||u||_{\check{H}(A)} \lesssim ||\chi^{-}(A_r)u||_{\mathbf{H}^{\frac{1}{2}}} + ||\chi^{+}(A_r)u||_{\mathbf{H}^{-\frac{1}{2}}}$$

for all $u \in B$.

Spaces:

$$W_{-}^{*} := \chi^{-}(A_{r}^{*})L^{2}(E_{\Sigma}) \cap \sigma_{0}^{*}B^{\mathrm{ad}} \qquad W_{-} := \chi^{-}(A_{r})W_{-}^{*}$$

$$W_{+} := \chi^{+}(A_{r})L^{2}(E_{\Sigma}) \cap B \qquad W_{+}^{*} := \chi^{+}(A_{r}^{*})W_{+}$$

$$V_{-}^{*} := \chi^{-}(A_{r}^{*})L^{2}(E_{\Sigma}) \cap (W_{-}^{*})^{\perp} \qquad V_{-} := \chi^{-}(A_{r})V_{-}^{*}$$

$$V_{+} := \chi^{+}(A_{r})L^{2}(E_{\Sigma}) \cap W_{+}^{\perp} \qquad V_{+}^{*} := \chi^{+}(A_{r}^{*})V_{+}.$$

Spaces:

$$\begin{split} W_{-}^{*} &:= \chi^{-}(A_{r}^{*}) \mathcal{L}^{2}(E_{\Sigma}) \cap \sigma_{0}^{*} B^{\mathrm{ad}} & W_{-} := \chi^{-}(A_{r}) W_{-}^{*} \\ W_{+} &:= \chi^{+}(A_{r}) \mathcal{L}^{2}(E_{\Sigma}) \cap B & W_{+}^{*} := \chi^{+}(A_{r}^{*}) W_{+} \\ V_{-}^{*} &:= \chi^{-}(A_{r}^{*}) \mathcal{L}^{2}(E_{\Sigma}) \cap (W_{-}^{*})^{\perp} & V_{-} := \chi^{-}(A_{r}) V_{-}^{*} \\ V_{+} &:= \chi^{+}(A_{r}) \mathcal{L}^{2}(E_{\Sigma}) \cap W_{+}^{\perp} & V_{+}^{*} := \chi^{+}(A_{r}^{*}) V_{+}. \end{split}$$

Splitting:

$$L^{2}(E_{\Sigma}) = V_{-} \oplus W_{-} \oplus V_{+} \oplus W_{+} = V_{-}^{*} \oplus W_{-}^{*} \oplus V_{+}^{*} \oplus W_{+}^{*}.$$

$$\begin{split} X_- &= \chi^-(A_r)|_{B \cap W_+^{\perp}} : B \cap W_+^{\perp} \to \chi^-(A_r)B, \text{ and} \\ X_+^* &= \chi^+(A_r^*)|_{\sigma_0^*B^{\mathrm{ad}} \cap (W_-^*)^{\perp}} : \sigma_0^*B^{\mathrm{ad}} \cap (W_-^*)^{\perp} \to \chi^+(A_r^*)\sigma_0^*B^{\mathrm{ad}}. \end{split}$$

are isomorphisms with their ranges.

$$\begin{split} X_- &= \chi^-(A_r)|_{B \cap W_+^\perp} : B \cap W_+^\perp \to \chi^-(A_r)B, \text{ and} \\ X_+^* &= \chi^+(A_r^*)|_{\sigma_0^*B^{\mathrm{ad}} \cap (W_-^*)^\perp} : \sigma_0^*B^{\mathrm{ad}} \cap (W_-^*)^\perp \to \chi^+(A_r^*)\sigma_0^*B^{\mathrm{ad}}. \end{split}$$

are isomorphisms with their ranges.

$$g_0 = P_{V_+}(X_-)^{-1}$$
 and $h_0 = P_{V_-^*}(X_+^*)^{-1}$.

$$\begin{split} X_- &= \chi^-(A_r)|_{B \cap W_+^\perp} : B \cap W_+^\perp \to \chi^-(A_r)B, \text{ and} \\ X_+^* &= \chi^+(A_r^*)|_{\sigma_0^*B^{\mathrm{ad}} \cap (W_-^*)^\perp} : \sigma_0^*B^{\mathrm{ad}} \cap (W_-^*)^\perp \to \chi^+(A_r^*)\sigma_0^*B^{\mathrm{ad}}. \end{split}$$

are isomorphisms with their ranges.

$$g_0 = P_{V_+}(X_-)^{-1}$$
 and $h_0 = P_{V_-^*}(X_+^*)^{-1}$.

Obtain:

$$B = W_{+} \oplus \left\{ v \in V_{-}^{\frac{1}{2}} : v + g_{0}v \right\}$$
$$B^{\text{ad}} = W_{-}^{*} \oplus \left\{ u \in (V_{+}^{*})^{\frac{1}{2}} : u + h_{0}u \right\}.$$

References I

[AMN97] Pascal Auscher, Alan McIntosh, and Andrea Nahmod.

Holomorphic functional calculi of operators, quadratic estimates and interpolation.

Indiana Univ. Math. J., 46(2):375-403, 1997.

[BB12] Christian Bär and Werner Ballmann.

Boundary value problems for elliptic differential operators of first order.

17:1-78, 2012.

[Gru12] Gerd Grubb.

The sectorial projection defined from logarithms.

Math. Scand., 111(1):118-126, 2012.

[Haa06] Markus Haase.

The functional calculus for sectorial operators, volume 169 of Operator Theory: Advances and Applications,

Birkhäuser Verlag, Basel, 2006.

[See67] R. T. Seeley.

Complex powers of an elliptic operator.

pages 288-307, 1967.

[Shu01] M. A. Shubin.

Pseudodifferential operators and spectral theory.

Springer-Verlag, Berlin, second edition, 2001.

Translated from the 1978 Russian original by Stig I. Andersson.