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The flow for smooth metrics

Let M be a smooth compact manifold, and g a smooth metric. Let
ρ

g
t :M×M→ R be the heat kernel of the Laplacian ∆g.

Fix t > 0, x ∈M and v ∈ TxM. Let ϕt,x,v be a solution to:

− divg(ρg
t (x, y)∇ϕt,x,v)(y) = (dxρ

g
t (x, y))(v)ˆ

M
ϕt,x,v(y) dµg(y) = 0.

(CE)

Define gt, a metric evolving in time by:

gt(u, v)(x) =

ˆ
M

g(∇ϕt,x,u(y),∇ϕt,x,v(y)) ρ
g
t (x, y) dµg(y)

= 〈ρg
t (x, · )∇ϕt,x,u,∇ϕt,x,v〉L2(M,g)

(GM)
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Connection to the Ricci flow

Let γ : [0, 1]→M be an g-geodesic. Then,

∂tgt(γ̇(s), γ̇(s))| t=0 = −2Ricg(γ̇(s), γ̇(s)),

That is, the metrics t 7→ gt is tangential to the Ricci flow
almost-everywhere along g-geodesics.

Note: this is not saying it is a linearisation of the Ricci flow.

Main redeeming feature: this can be defined as a flow of distance
metrics dt for metric spaces (X , d, µ) that satisfy the Riemannian
Curvature Dimension (RCD) condition.
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Wasserstein space

Let (X ,d, µ) be a compact measure metric geodesic space. Denote
set of probability measures by P(X ).

For ν, σ ∈P(X ), a transport plan between ν and σ is measure π on
X × X such that

π(A×X ) = ν(A) and π(X ×B) = σ(B).

Define:

W2(ν, σ)2 = inf

{ˆ
X×X

d(x, y)2 dπ : π transport map from ν to σ

}
,

which is the Wasserstein metric.

The space (P(X ),W2) is the Wasserstein space and it is a geodesic
space.
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Relative entropy and synthetic Ricci curvature

Let ν ∈P(X ) as before. The relative entropy of ν with respect to µ
is then given by

Entµ(ν) =

{´
X ρ log ρ dµ, ν � µ, dν = ρ dµ,

+∞, otherwise.

Suppose that ν0, ν1 ∈P(X ) and let νt be the geodesic between ν0

and ν1.

Now, suppose that there exists κ ∈ R such that

Entµ(νt) ≤ (1− t) Entµ(ν0) + tEntµ(ν1)− κ

2
(1− t)tW 2

2 (ν0, ν1).

Then, we say that (X ,d, µ) has Ricci curvature bounded below by κ,
or is said to be CD(κ,∞).
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Cheeger Energy

For a Lipschitz function ξ ∈ Lip(X , d), recall the pointwise Lipschitz
constant:

Lip ξ(x) = lim sup
y→x

|ξ(x)− ξ(y)|
d(x, y)

,

for non-isolated points x ∈ X .

For f ∈ L2(X , µ), if fn → f with fn ∈ Lip(X , d), define the Cheeger
energy:

Ch(f) = inf
Lip(X ,d)3fn→f

lim
n→∞

1

2

ˆ
X
|Lip fn|2 dµ.

If no such such sequence exists, Ch(f) = +∞.
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Infinitesimally Hilbertian

The first-order Sobolev space is defined as:

W1,2(X ) =
{
f ∈ L2(X , µ) : Ch(f) <∞

}
.

It is a Banach space with respect to the norm

‖f‖2W1,2 = ‖f‖22 + 2Ch(f).

If this norm polarises, i.e., (W1,2(X ), ‖· ‖W1,2) is a Hilbert space, then
we say that (X ,d, µ) is infinitesimally Hilbertian.

The space (X ,d, µ) is RCD if it is CD(κ,∞) and it is infinitesimally
Hilbertian.

This is equivalent to the Laplacian associated to the energy Ch being
linear.
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Heat kernels and action for RCD spaces

For an RCD space (X , d, µ), the heat kernel ρt exists and it is
Lipschitz.

There is an induced heat action on (P(X ),W2), which is a map
Ht : P(spt µ)→P(spt µ) such that for all ν, σ ∈P(X ) with
spt ν, spt σ ⊂ spt µ,

W2(Ht(ν),Ht(σ)) ≤ e−κt W2(ν, σ).

For (X ,d, µ) = (M, dg, µg/µg(M)), if s 7→ γs is an absolutely
continuous curve, then

Ht(δγs) = ρ
g
t (γs, · ) dµg.
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The flow for RCD spaces

Define: d̃t(x, y) = W2(Ht(δx),Ht(δy)). The spaces (X , d̃t) are
pseudo-metric spaces for each t > 0.

Noting that s→ γs is d-Lipschitz implies that it is also d̃t Lipschitz,
define

dt(x, y) = inf
γ d−Lipschitz

ˆ
|γ̇s|d̃t

ds,

where

|γ̇s|d̃t
= lim

h→0

d̃t(γs+h, γs)

h
.

The family of spaces (X , dt) are metric spaces for all t > 0,
limt→0 dt = d.

Theorem (Gigli-Mantegazza, [GM])

When (X ,d, µ) = (M,dg, µg/µg(M)), we have that dt = dgt .
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Main Theorem

Theorem (Theorem 1.1, [BLM])

Let M be a smooth, compact manifold with rough metric g that
induces a distance metric dg. Moreover, suppose there exists K ∈ R
and N > 0 such that (M,dg, µg) ∈ RCD(K,N). If S 6=M is a
closed set and g ∈ Ck(M\ S), there exists a family of metrics
gt ∈ Ck−1,1 on M\ S evolving according to (GM) on M\ S. For
two points x, y ∈M that are gt-admissible, the distance dt(x, y)
given by the RCD(K,N) Gigli-Mantegazza flow is induced by gt.

Note: x, y ∈M \ S are gt-admissible if for any abs. cts. γ : I →M
connecting these points, there is another abs. cts. γ′ : I →M with
dt-length less than γ and for which γ′(s) ∈M \ S
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Rough metrics

Let g ∈ Γ(T (2,0)M) be symmetric, with measurable coefficients.
Suppose for each x ∈M, there exists some chart (ψ,U) containing x
and a constant C ≥ 1 (dependent on U), such that, for y-a.e. in U ,

C−1|u|ψ∗δ(y) ≤ |u|g(y) ≤ C|u|ψ∗δ(y),

where u ∈ TyM, |u|2g(y) = g(u, u) and ψ∗δ is the pullback of the

Euclidean metric inside ψ(U) ⊂ Rn. Then, g is called a rough metric.

• By the usual expression dµg =
√

det gij dL inside local
comparable charts, obtain a Borel measure µg, finite on compact
sets.

• A priori, there may not be an induced length structure.
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• The Lp spaces exist, and differentiation on functions ∇ = d is
densely-defined and closable.

• Sobolev space W1,2(M) = D(∇) and the Laplacian is a
self-adjoint operator ∆g = − div∇, where div = ∇∗.
• Two rough metrics g and g̃ are C-close for some C ≥ 1 if

C−1|u|g̃(y) ≤ |u|g(y) ≤ C|u|g̃(y),

for y-a.e. in M.

• In this situation, ∆g = −θ−1 divg̃ θB∇, where

g(u, v) = g̃(Bu, v) and θ =
√

det B.
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Main fact: for M compact, for every rough metric g, there exists a
smooth metric g̃ that is C-close to g.

We have that ϕt,x,v ∈W1,2(M) solves:

− divg(ρg
t (x, y)∇ϕt,x,v)(y) = (dxρ

g
t (x, y))(v)ˆ

M
ϕt,x,v(y) dµg(y) = 0.

if and only if

− divg̃(B(y)θ(y)ρg
t (x, y)∇ϕt,x,v)(y) = θ(y)(dxρ

g
t (x, y))(v)ˆ

M
ϕt,x,v(y) dµg(y) = 0.

So, it suffices to study divergence form operators with L∞ coefficients
for smooth metrics g̃.
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L∞-coefficient divergence form operators

Fix M smooth compact manifold and g̃ a smooth Riemannian metric.
Let A ∈ Γ(L∞(T (1,1)M)) real-symmetric and elliptic:

(i) there exist κ > 0 such that for x a.e. g̃x(A(x)u, u) ≥ κ|u|2x
(ii) there exists a Λ <∞ such that esssupx∈M |A(x)| < Λ.

• Associated energy: JA[u, v] = 〈A∇u,∇v〉 for D(JA) = W1,2(M).

• Ellipticity gives: κ‖∇u‖2 ≤ JA[u, u] ≤ Λ‖∇u‖2.

• Lax-Milgram theorem yields LA = −divA∇ with domain

D(LA) =
{
u ∈W1,2(M) : v 7→ JA[u, v]continuous

}
as a non-negative self-adjoint operator. Moreover,
D(
√

LA) = W1,2(M).
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• L2(M) = N (LA)⊕⊥ R(LA),

• N (LA) = N (∇) and crucially,

R(LA) = R :=

{
u ∈ L2(M) :

ˆ
u = 0

}
,

• The operator LRA = LA with D(LRA ) = D(LA) ∩R is an
unbounded operator LRA : R → R.

• σ(LA) = {0 = λ0 < λ1 ≤ λ2 ≤ . . . } , and

• σ(LRA ) = {0 < λ1 ≤ λ2 ≤ . . . } .

Proposition

Let f ∈ L2(M) with
´
f dµg̃ = 0. Then, there exists a unique

u ∈W1,2(M) with
´
u dµg̃ = 0 such that LAu = f . Explicitly,

u = (LRA )−1f.
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Back to continuity equations on rough metrics

Let g be a rough metric, g(u, v) = g̃(Bu, v), and let
(x, y) 7→ ωx(y) ∈ C0,1(M2), ωx > 0. Suppose there exists
∅ 6= N ⊂M open set on which x 7→ ωx(· ) ∈ Ck(N ), for k ≥ 1. Let

Dx = −divg ωx∇ = −θ−1 divg̃ Bθωx∇.

The continuity equation is then

Dxϕx = ηx. (F)

By previous proposition,

Proposition

Let ηx ∈ L2(M) with
´
ηx dµg = 0. Then there exists a unique

ϕx ∈W1,2(M) with
´
ϕx dµg = 0 solving (F).
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Regularity

To understand regularity, we need to understand the behaviour of the
operators x 7→ Dx. Two crucial facts:

• D(Dx) = D(∆g) and Dxu = ωx∆gu− g(∇u,∇ωx),

• M 3 x 7→ Dx : (D(∆g), ‖· ‖∆g)→ L2(M) is a uniformly bounded
family of operators and ‖u‖Dx ' ‖u‖∆g holds with the implicit
constant independent of x ∈M.

Let v ∈ TxM and γ : (−ε, ε)→M such that γ(0) = x and
γ̇(0) = v. Let f : N → V, where V where V is some normed vector
space.

• Difference quotient: Qvsf(x) = f(x)−f(γ(s))
s .

• Directional derivative of f (when it exists and it is independent of
the generating curve γ): (dxf(x))(v) = lims→0Q

v
sf(x).
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For us, V = L2(M) with the weak topology for the choice
f(x) = Dx. More precisely, if there exists D̃x : D(∆g)→ L2(M)
satisfying lims→0〈QvsDxu,w〉 = 〈D̃xu,w〉, for every w ∈W1,2(M),
say that Dx has a (weak) derivative at x and write (dxDx) = D̃x.

Proposition

Let x 7→ ux : N → D(∆g), v ∈ TxM and suppose that (dxux)(v)
exists weakly. Then (dxDxux)(v) exists weakly if and only if
Dx((dxux)(v)) exists weakly and

(dxDxux)(v) = (dxDx)(v)ux + Dx((dxux)(v)).
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Regularity of solutions

Theorem

Suppose that k ≥ 1 and (x, y) 7→ ωx(y) ∈ C0,1(M2) and
x 7→ ωx ∈ Ck(N ). Moreover, suppose that
(x, y) 7→ ηx(y) ∈ C0(N ×M) and x 7→ ηx(y) ∈ Cl(N ) where l ≥ 1.
If at x ∈ N , ϕx solves (F) with

´
M ϕx dµg =

´
M ηx dµg = 0, the

map x 7→ 〈ηx, ϕx〉 ∈ Cmin{k,l}−1,1(N ).
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Back to the flow

Set ωx(y) = ρ
g
t (x, y), ηx = dx(ρg

t (x, y))(v) for x ∈ N .

(i) The heat kernel ρg
t is Lipschitz for each t > 0 because we assume

that (M, g, µg) induces an RCD space.

(ii) Backward uniqueness of the heat flow (via semigroup argument to
avoid maximum principles) gives us that dx(ρg

t (x, y))(v) 6= 0 if
v 6= 0.

(iii) For each t > 0, there exists κt > 0 and Λt <∞ such that
κt ≤ ρ

g
t (x, y) ≤ Λt.

This gives that: gt is non-degenerate, symmetric, linear.

Regularity x 7→ gt(x): previous theorem.
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General rough metric spaces

In the situation that g does not necessarily induce an RCD structure,
(M, g) is only guaranteed to be a measure space.

• Considering ∆g = −θ−1 divg̃ Bθ∇ on a smooth g̃,

• Parabolic Harnack estimates exist for such operators as proved in
[SC],

• Beurling-Deny condition for ∆g: f ∈ D(
√

∆g) (= W1,2(M))
implies |f | ∈ D(

√
∆g) and ‖

√
∆g|f |‖ . ‖

√
∆gf‖, so that e−t∆g

is positive-preserving.

• Obtain a heat kernel (x, y) 7→ ρ
g
t (x, y) ∈ Cα(M2) for some α > 0.

This means we can still make sense of the equation (CE) and define
(GM) on a non-singular region.

Best expected regularity is only continuity.
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Theorem for non-RCD rough spaces

Theorem (Theorem 3.4 [BCon])

Let M be a smooth, compact manifold, and ∅ 6= N ⊂M, an open
set. Suppose that g̃ is a rough metric and that ρ

g̃
t ∈ C1(N 2). Then,

gt as defined by (GM) exists on N and it is continuous.

Suffices to know that ‖
√

Dxu−
√

Dyu‖ is small whenever the
coefficients ωx are close in L∞.

This amounts to proving a homogeneous Kato square root estimate.
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Homogeneous Kato square root problem

Let B ∈ Γ(L∞(T (1,0)M)), possibly non-symmetric, and complex, and
b ∈ L∞(M). Let

ΠB =

(
0 −bdivB
∇ 0

)
.

Theorem (Theorem 4.3 [BCon])

The operator ΠB admits a bounded functional calculus. In particular,
D(
√
−bdivB∇) = W1,2(M) and ‖

√
−bdivB∇u‖ ' ‖∇u‖.

Moreover, whenever ‖b̃‖∞ < η1 and ‖B̃‖∞ < η2, where ηi < κi, we
have the following Lipschitz estimate

‖
√
−bdivB∇u−

√
−(b+ b̃) div(B + B̃)∇u‖ . (‖b̃‖∞+‖B̃‖∞)‖∇u‖

whenever u ∈W1,2(M). The implicit constant depends on b, B and
ηi.
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