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The setting

M smooth manifold with smooth measure µ.

(E , hE)→M and (F , hF )→M Hermitian bundles.

D : C∞(M; E)→ C∞(M;F) order m ≥ 1 differential operator.

D elliptic ⇐⇒ σD(x, ξ) : Ex → Fx invertible for 0 6= ξ ∈ T∗xM.

Formal adjoint D† : C∞(M;F)→ C∞(M; E), i.e.,

〈Du, v〉L2(F ;hF ,µ) = 〈u,D†v〉L2(E;hE ,µ)

∀u ∈ C∞c (M̊; E), v ∈ C∞c (M̊;F).
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Define:
Dmax := ((D†)|C∞c (M̊;F))

∗ and Dmin := D|C∞c (M̊;E).

I.e.

dom(Dmax) :=
{
u ∈ L2(E ; hE , µ) :

∃Cu |〈u,D†v〉|≤ Cu‖v‖L2(F ;hF ,µ) ∀v ∈ C∞c (M̊; E)
}
.

Goal: Understand all (not necessarily closed) extensions Dext

Dmin ⊂ Dext ⊂ Dmax.

Equivalently, understand all subspaces of

dom(Dmax)�dom(Dmin).
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More precisely:

(i) a Banach space Ȟ(D);

(ii) map γ : dom(Dmax)→ Ȟ(D) bounded surjection satisfying

ker γ = dom(Dmin).

Open mapping theorem:

γ : dom(Dmax)�dom(Dmin)→ Ȟ(D)

Banach space isomorphism.
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Examples

(i) (M, g) complete Riemannian, E = F , D = D† first-order (symmetric). Assume:
∃C <∞ |σD(x, ξ)|op≤ C|ξ|. Then, for all k ∈ N+,
dom((Dk)max) = dom((Dk)min). I.e.,

dom((Dk)max)�dom((Dk)min) = 0.

(ii) (N , g) “manifold” with conic singularity at x ∈ N . I.e., in “polar coordinates” near
x, we have g = dr2 + r2gP , for (P, gP) (n− 1)-dim Riemannian manifold. Set
M = N \ {x}, E = F →M Clifford bundle, D Dirac operator on E . Then,

dim
(

dom(Dmax)�dom(Dmin)

)
<∞.
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The situation of boundary

Suppose M has a smooth boundary ∂M.

Let ~T inward pointing vectorfield, and τ associated inward pointing co-vectorfield.

Consider γ : C∞c (M; E)→⊕m−1
j=0 C∞c (∂M; E)

γ(u) =
(
u|∂M, (∂~Tu)|∂M, . . . , (∂m−1

~T
u)|∂M

)
.

Want:

I extend γ to act on all of dom(Dmax), ker γ = dom(Dmin),

I Ȟ(D) := γ dom(Dmax).
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Now suppose M is compact.

Classic result (Seeley ’66, Lions-Magenes ’63 (Eng ’72)):
γ : C∞(M; E)→⊕m−1

j=0 C∞(∂M; E) extends to a bounded mapping

γ : dom(Dmax)→
m−1⊕
j=0

H−
1
2
−j(∂M; E)

I Ȟ(D) := ran γ dense in
⊕m−1

j=0 H−
1
2
−j(∂M; E),

I ker γ = Hm
0 (M; E) = dom(Dmin).

Topologise Ȟ(D) such that γ : dom(Dmax)�dom(Dmin)�� Ȟ(D).

Goal: describe topology of Ȟ(D) in terms of data on ∂M.
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Boundary conditions
I Generalised boundary condition: B ⊂ Ȟ(D) subspace.

DB extension satisfying Dmin ⊂ DB ⊂ Dmax with

dom(DB) = {u ∈ dom(Dmax) : γu ∈ B)} .

I Boundary condition: B ⊂ Ȟ(D) closed subspace.
 DB closed operator.

I Dmin ⊂ Dext ⊂ Dmax (non-closed) closed extension
⇐⇒ Bext := {γu : u ∈ dom(Dext)} (generalised) boundary condition with
DBext = Dext.

I Adjoint condition: D∗B = D†B∗ where

B∗ :=
{
v ∈ Ȟ(D†) : 〈u, v〉Ȟ(D)×Ȟ(D†) = 0 ∀u ∈ B

}
.

where 〈u, v〉Ȟ(D)×Ȟ(D†) = 〈Dmaxu, v〉 − 〈u,D†maxv〉 induced pairing.
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I Fredholm boundary condition: B boundary condition such that DB is a Fredholm
operator.

I Semi-elliptically regular boundary condition: dom(DB) ⊂ Hm(M; E) ⇐⇒

B ⊂ Hm,m− 1
2 (∂M; E) :=

m−1⊕
j=0

Hm− 1
2
−j(∂M; E).

I Elliptically regular boundary condition: DB and D∗B semi-elliptically regular I.e.

dom(DB) ⊂ Hm(M; E) and dom(D∗B) ⊂ Hm(M;F).

Note: B Elliptically regular =⇒ B Fredholm.
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Seeley and Calderón projectors

Cauchy data space: CD := γ ker(Dmax). Define:

Hm,s(∂M; E) :=

m−1⊕
j=0

Hs−j(∂M; E).

There exists a classical pseudo-differential projector PCD of order zero such that

CD = PCDHm,− 1
2 (∂M; E),

and
Ȟ(D) = (1− PCD)Hm,m− 1

2 (∂M; E)
⊕
PCDHm,− 1

2 (∂M; E).

First-order: Ȟ(D) = (1− PCD)H
1
2 (∂M; E)

⊕PCDH−
1
2 (∂M; E).

Induced pairing 〈u, v〉Ȟ(D)×Ȟ(D†) described in terms of this description.
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Towards Fredholmness - closed range

Theorem. Suppose B generalised boundary condition for D elliptic differential
operator of order m ≥ 1. Then, the following hold:

(i) ker(DB) is finite-dimensional ⇐⇒ B ∩ CD is finite-dimensional.

(ii) ran(DB) = ran(DB+CD) and it is closed ⇐⇒ B + CD is a boundary condition. I.e.
B + CD is closed in Ȟ(D).

(iii) ran(DB) has finite algebraic codimension ⇐⇒ B + CD has finite algebraic
codimension in Ȟ(D) ⇐⇒ ran(DB) is closed and ran(DB)⊥ is finite-dimensional.
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Examples

(i) B := Hm,m− 1
2 (∂M; E) =

⊕m−1
j=0 Hm− 1

2
−j(∂M; E).

Easy to check: dom(DB) = Hm(M; E).
B dense subspace of Ȟ(D) =⇒ DB is not closed.

B + CD

= Hm,m− 1
2 (∂M; E) + (1− PCD)Hm,m− 1

2 (∂M; E)
⊕
PCDHm,− 1

2 (∂M; E)

= Ȟ(D)

=⇒ ran(DB) = ran(Dmax) closed.

(ii) B semi-elliptically regular BC ⇐⇒ B ⊂⊕m−1
j=0 Hm− 1

2
−j(∂M; E).

Then ran(DB) is closed.
ran(DB) = ran(DB+CD)

=⇒ B + CD boundary condition.
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Characterising Fredholmness

X Banach space, A,B closed subspaces of X.

(A,B) is a Fredholm pair in X if:

I A+B is closed;

I X�(A+B) is finite dimensional.

ind(A,B) := dim(A ∩B)− dim
(
X�(A+B)

)
.

Theorem. DB is a Fredholm operator ⇐⇒ (B, CD) is a Fredholm pair in Ȟ(D).

B∗ ∩ Ȟ(D†) ∼= Ȟ(D)�(B + CD)

ind(DB) = ind(B, CD) + dim ker(Dmin)− dim ker(D†min).
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Elliptic regularity

Theorem. P : Hm,m− 1
2 (∂M; E)→ Hm,m− 1

2 (∂M; E) bounded projection satisfying:

(i) PCD − (1− P ) Fredholm on Hm,m− 1
2 (∂M; E);

(ii) PCD − (1− P ) extends by continuity to Hm,− 1
2 (∂M; E) and this extension is

Fredholm on Hm,− 1
2 (∂M; E).

Then,
BP = (1− P )Hm,m− 1

2 (∂M; E)

defines an elliptically regular boundary condition.

In particular, (1− PC)Hm,m− 1
2 (∂M; E) elliptically regular boundary condition.

Note: This does not imply P acts bounded only Ȟ(D).
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Example - Dirichlet Laplacian

∇ : C∞(E)→ C∞(T∗M⊗E), ∆ := ∇†∇ : C∞(E)→ C∞(E), and m = 2:

Hm,m− 1
2 (∂M; E) = H2,2−1/2(∂M; E) = ⊕1

j=0H
3
2
−j(∂M; E) = H

3
2 (∂M; E)⊕H

1
2 (∂M; E)

Hm,− 1
2 (∂M; E) = H2,− 1

2 (∂M; E) = H−
1
2 (∂M; E)⊕H−

3
2 (∂M; E).

Boundary trace: γ(u) = (u|∂M, ∂~Tu|∂M).

Dirichlet Laplacian: dom(∆Dir) :=
{
u ∈ dom(∆max) : u|∂M = 0

}
.

Dirichlet BC:
BDir :=

{
u|∂M : u|∂M = 0

}
.

Elliptic regularity of boundary condition is not obvious.
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Projector defining BC (i.e., BDir = ran(1− PDir)):

PDir =

(
1 0
0 0

)
.

Principal symbol of PC :

σ0(PC)(x, ξ) =

(
IdE |ξ|−1IdE

|ξ|−1IdE IdE

)
.

Then,

σ0(PC − (1− PDir)) =

(
IdE |ξ|−1IdE

|ξ|−1IdE −IdE

)
,

bounded on both H2, 3
2 (∂M; E) and H2,− 1

2 (∂M; E). Theorem gives ∆Dir is elliptically
regular. In fact,

dom(∆Dir) = H2(M; E) ∩H1
0(M; E).
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Back to the topology of Ȟ(D)

P : Hm,− 1
2 (∂M; E)→ Hm,− 1

2 (∂M; E) projection, restricts to a projection on

Hm,m− 1
2 (∂M; E) is boundary decomposing if:

‖u‖Ȟ(D)' ‖(1− P )u‖
Hm,m− 1

2 (∂M;E)
+‖Pu‖

Hm,− 1
2 (∂M;E)

.

Theorem. P : Hm,m− 1
2 (∂M; E)→ Hm,m− 1

2 (∂M; E) bounded projection satisfying:

(i) PCD − (1− P ) Fredholm on Hm,m− 1
2 (∂M; E);

(i) PCD − (1− P ) extends by continuity to Ȟ(D) and Hm,− 1
2 (∂M; E) and this

extension is Fredholm on Ȟ(D).

Then, P is boundary decomposing.
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The first-order case
Adapted boundary operator A on ∂M:

σA(x, ξ) = σD(x, τ(x))−1 ◦ σD(x, ξ).

Elliptic differential operator of order 1, can be chosen ω-bisectorial ∃ω < π/2.
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|ζ|||(ζ −Ar)
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χ+(ζ) = 0 χ+(ζ) = 1
χ−(ζ) = 1 χ−(ζ) = 0
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The spaces, m = 1

H1,s(∂M; E) =

m−1⊕
j=0

Hs−j(∂M; E) = Hs(∂M; E).

We have χ+(A) is boundary decomposing, i.e.,

‖u‖Ȟ(D)' ‖χ−(A)u‖
H

1
2 (∂M;E)

+‖χ+(A)u‖
H

1
2 (∂M;E)

.

B := χ−(A)H
1
2 (∂M; E) - Atiyah-Patodi-Singer boundary condition for A.

I.e.,
D
χ−(A)H

1
2 (∂M;E)

elliptically regular and hence Fredholm.

In particular dim ker D
χ−(A)H

1
2 (∂M;E)

<∞.
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What about “anti-APS” B′ := χ+(A)H−
1
2 (∂M; E)?

Have (1− PCD)H
1
2 (∂M; E) and χ−(A)H

1
2 (∂M; E) are elliptic boundary conditions.

By construction: dim ker
(

D
PCDH−

1
2 (∂M;E)

)
= dim ker(Dmax) =∞.

Is dim ker
(

D
χ+(A)H−

1
2 (∂M;E)

)
=∞?

I Principal symbol of PC is the same as principal symbol of χ+(A).

I PC − χ+(A) is an operator of order −1.

I PC − (1− χ+(A)) = PC − χ−(A) elliptic.

h Warning: This does not imply PC − χ+(A) is compact! h
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Concrete counterexample
M = D =

{
x ∈ R2 : |x|R2≤ 1

}
unit disc. Boundary ∂M = ∂D = S1.

E = F =M× C2.

In polar coordinates (r, θ):

D0 :=

(
0 ∂r + ı

r∂θ
−∂r + ı

r∂θ 0

)
= σ(∂r + A +R00),

σ =

(
0 1
−1 0

)
and A =

(
−ı∂θ 0

0 ı∂θ

)
.

For α ∈ C∞c (0, 1], α(1) = 0,

Dα := σ(∂r + A + (R00 − ıα(r)σ∂θId)) =

(
ıα(r)∂θ ∂r + ı

r∂θ
−∂r + ı

r∂θ ıα(r)∂θ

)
.
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u ∈ χ+(A)H−
1
2 (∂M; E) ∩ CD ⇐⇒

{
χ+(A)u = u

PCDu = u

⇐⇒
{
χ+(A)u = u

(χ+(A)− PCD)u = 0

⇐⇒
{
χ+(A)u = u

Lu = 0

L := χ+(A)− PCD − σ
α′(1)

4
(1 + ∆)−

1
2χ−(A) ∈ ΨDO(−1).

Symbol:

σ−1(L, ξ) =
α′(1)

4

(
0 1

|ξ|
−1
ξ 0

)
.

Choose α ∈ C∞c (0, 1] such that α′(1) 6= 0 =⇒ σ−1(L, ξ) invertible for ξ 6= 0 =⇒
kerL <∞ ⇐⇒ dim

(
χ+(A)H−

1
2 (∂M; E) ∩ CD

)
<∞.
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