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M smooth manifold with smooth measure .
(£,hf) = M and (F,h7) — M Hermitian bundles.
D: C®(M;E) — C>®°(M;F) order m > 1 differential operator.
D elliptic <= op(z,&) : £, — Fy invertible for 0 # £ € TEM.
Formal adjoint DT : C®°(M; F) — C®(M;E), ie.,

(Du, U>L2(.7-';h7",,u) = (u, DTU>L2(£;h5,,u)

Vu € C2(M;E), v e CP(M;F).
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le.
dom(Dyax) := {u € L2(&;h¢, u) -

IC.  |(u,DI0)|< Cullvllpzrmr .y Vo € ch(/\h;s)} .
Goal: Understand all (not necessarily closed) extensions Dey
Dmin C Dext C Dmax-
Equivalently, understand all subspaces of
d Dmax
O Dmac), g (D)
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More precisely:

(i) a Banach space H(D);

(i) map ~ : dom(Dyay) — H(D) bounded surjection satisfying
ker v = dom(Dypyin)-

Open mapping theorem:

v dOm(Dmax)/dom(Dmin) — H(D)

Banach space isomorphism.
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The situation of boundary

Suppose M has a smooth boundary M.
Let 7 inward pointing vectorfield, and 7 associated inward pointing co-vectorfield.
Consider v : C2°(M; &) — @Iy CX(OM;€)

Yw) = (ulgpes Or)logngs - (27 W) gu) -

Want:

» extend v to act on all of dom(Dyax), ker v = dom(Duin ),
» H(D) := v dom(Dyax).
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Now suppose M is compact.

Classic result (Seeley '66, Lions-Magenes '63 (Eng '72)):
v:C¥(M;E) — @m L % (OM:; E) extends to a bounded mapping

m—1

— @ Hz0OM;E)

’y dom max
J=0

» H(D) := ran+ dense in GB;-”:_OI H_%_j(a./\/l;g),
» kery = Hj'(M; &) = dom(Dmin).

Topologise H(D) such that ~ : dom(D de)/dOm( Dinin) ™ H(D).

Goal: describe topology of H(D) in terms of data on M.
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Dp extension satisfying Dynin € Dp C Diax with

dom(Dp) = {u € dom(Dpax) : yu € B)}.

» Boundary condition: B  H(D) closed subspace.
~» Dp closed operator.

» Duin € Dext € Diax (non-closed) closed extension
<= Bext = {yu: u € dom(Deyxt)} (generalised) boundary condition with
DBext - Dext-
» Adjoint condition: DY, = DL* where
B* = {v e HDY: (u, Viamyxamh =0 Vu € B} :

where (4, v) ) xipty = (Dmaxtt, v) — (u, Dlaxv) induced pairing.
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» Elliptically regular boundary condition: Dp and D7} semi-elliptically regular |.e.

dom(Dp) c H*(M;E) and dom(Dp) C H(M; F).

Note: B Elliptically regular = B Fredholm.
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There exists a classical pseudo-differential projector Pepy of order zero such that
Cp = PepH™ 2 (IM; ),

and
H(D) = (1 — Pep)H™ 2 (IM; E) @) PepH™ 2 (M; €).

First-order: TI(D) = (1 — Pep)Hz (OM; E) @ PepH 2 (OM; E).

Induced pairing (u, U>H(D)XH(DT) described in terms of this description.
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(ii) ran(Dp) = ran(Dp+¢,,) and it is closed <= B+ Cp is a boundary condition. |.e.
B+ Cp is closed in H(D).

(iii) ran(Dp) has finite algebraic codimension <= B + Cp has finite algebraic
codimension in (D) <= ran(Dp) is closed and ran(Dpg)~ is finite-dimensional.
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Easy to check: dom(Dpg) = H™(M;E).
B dense subspace of H(D) = Dp is not closed.
B +Cp
= H™2 (M E) + (1 — Pep)H™™ 2 (9M; €) €D PepH™ 2 (OM; €)
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— ran(Dp) = ran(Dy,ax) closed.

(i) B semi-elliptically regular BC <= B C EB;”;OI Hm*%ﬂ(aM;g).
Then ran(Dpg) is closed.
(D5) ran(Dp) = ran(Dp.cp)

= B + Cp boundary condition.
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X Banach space, A, B closed subspaces of X.

(A, B) is a Fredholm pair in X if:
» A+ B is closed:;

> X/(A +B) is finite dimensional.

ind(A, B) := dim(A N B) — dim (X/<A N B)).

Theorem. Dy is a Fredholm operator <= (B,Cp) is a Fredholm pair in H(D).

Brafmh=H0 5 o

ind(Dp) = ind(B,Cp) + dim ker(Dyin) — dim ker(D]

min)‘
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Elliptic regularity
Theorem. P : Hm’m_%(ﬁM;é’) — Hm’m_%(ﬁj\/l;é') bounded projection satisfying:

(i) Pep — (1 — P) Fredholm on Hm’m_%(&/\/l;g);

(i) Pep — (1 — P) extends by continuity to Hm’_%(&/\/l; £) and this extension is
Fredholm on Hm’_%((?M;S).

Then, )
Bp = (1 - P)H™™ 2(0M;E)

defines an elliptically regular boundary condition.
In particular, (1 — Pc)Hm’mfé(aM;E) elliptically regular boundary condition.
Note: This does not imply P acts bounded only H(D).
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(OM;E) = H2 72 (OM; E) = H™2 (OM; E) & H 2 (OM; E).

= SIS

Boundary trace: y(u) = (ul 4, O 50 )-
Dirichlet Laplacian: dom(Ap;) := {u € dom(Apay) : ulgaq = 0}.

Dirichlet BC:
BDir = {U‘BM :u\aM = 0} .

Elliptic regularity of boundary condition is not obvious.

15/22



Projector defining BC (i.e., Bpi, = ran(1 — Ppj;)):

1 0
Ppiy = (0 0) .

16/22



Projector defining BC (i.e., Bpi, = ran(1 — Ppj;)):

1 0
Ppiy = (0 0) .

-1
oo(Pe)(z,§) = <|£|I—(ilid€ ‘ﬂld;dé)) .

Principal symbol of P¢:

16/22



Projector defining BC (i.e., Bpi, = ran(1 — Ppj;)):
1 0
Ppir = (0 0) -

1
oo(Pe)(z,§) = <|£|I—(ilid€ ‘f’ld;d£> .

Principal symbol of P¢:

Then,

Id —11d
O'()(PC — (1 — PDir)) = (|§_1§d5 |€’Id88> ’

bounded on both HZ%(aM;S) and Hz’_%(a/\/l;g).

16/22



Projector defining BC (i.e., Bpi, = ran(1 — Ppj;)):
1 0
Ppiyy = (0 0) .

-1
oo(Pe)(z,§) = <|£|I—(ilid€ ‘ﬂld;dé)) .

Principal symbol of P¢:

Then,

Id —11d
00(Pe — (1 = Ppy)) = (|§—1§d5 Ié‘lldgg) ’

bounded on both Hzg(aM;S) and HZ—%(aM;g). Theorem gives Ap;, is elliptically
regular.

16/22



Projector defining BC (i.e., Bpi, = ran(1 — Ppj;)):
1 0
Ppiyy = (0 0) .
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oo(Pe)(z,§) = <|£|I—(ilid€ ‘ﬂld;dé)) .

Principal symbol of P¢:

Then,

Id —11d
00(Pe — (1 = Ppy)) = (|§—1§d5 Ié‘lldgg) ’

bounded on both Hzg(a/\/{;c‘,’) and HZ’_%(aM;S). Theorem gives Ap;, is elliptically

regular. In fact,
dom(Apy) = H*(M;E) NHY(M;E).
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Back to the topology of H(D)

P: Hmﬁ%(@M;c‘,’) — Hmf%(@/\/l;é’) projection, restricts to a projection on
Hm’mfé(ﬁM;é’) is boundary decomposing if:

oy 10 = Pl g3 e P onecey

Theorem. P : Hm’m_%(ﬁ/\/l;é’) — Hm’m_%((?/\/l;é') bounded projection satisfying:

(i) Pcp — (1 — P) Fredholm on Hmﬁm_%(a/\/l;g);

(i) Pep — (1 — P) extends by continuity to H(D) and Hm’_%(a/\/l; £) and this
extension is Fredholm on H(D).

Then, P is boundary decomposing.
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The first-order case

Adapted boundary operator A on OM:

O—A(x7§) - O-D(xv’r(x))_l © O—D(x7§)'

Elliptic differential operator of order 1, can be chosen w-bisectorial Jw < 7/2.

IKIN¢—A)TY <O
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m—1
HY (0M; €) = @ B (OM; £) = HY(OM; E).
7=0

We have x(A) is boundary decomposing, i.e.,

sy I AVl i+ ANl

B:=x (A)H %(8/\/1 E) - Atiyah-Patodi-Singer boundary condition for A.

le.,
D - ome)

elliptically regular and hence Fredholm.

In particular dim ker D < 00.

X~ (A)HZ (OM;E)
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By construction: dim ker (D ) = dimker(Dyax) = 0.

PepH™ 2 (IM;E)

ls dim ker (D — o0?

x+(A>H*%<aM;s>>

» Principal symbol of P is the same as principal symbol of x™(A).
» Pc— xT(A) is an operator of order —1.
> Pc— (1—xT(A)) =Pc—x (A) elliptic.

%  Warning: This does not imply P¢ — x"(A) is compact! &
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Concrete counterexample
M=D={z €R?: |z[gz< 1} unit disc. Boundary M = D = S'.

E=F =M xC2

In polar coordinates (r,0):

For a € C°(0,1], (1) = 0,

Dy = 0(8 + A + (Roo — 10(r)odyld)) = ( w(r)dp  Or + 80) '

—0r + 109 10x(r)0p
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Pepu =u
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XT(Au=u

we T AH Z(OM:E)NCp {
Pepu =u

{X+(A)u =u
(X" (A) = Pep)u =0
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UGX+(A)H_%(8M;5)HCD — {X+(A)U—u
Pepu = u
{X+(A)u =u
(xT(A) = Pep)u =0

+ _
— XT(A)u=u
Lu=0
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+(A)y =
weyHAH 3 (OME)NCh = {X (Bu=u
Pepu =u
+ pu—
— XT(A)u=u
(X" (A) = Pep)u =0
+ _
— {X (Au=u
Lu =

o/(1)

Li=x"(A) = Pep —o—~(1+ A)"zy"(A) € UDO(-1).
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u e xT(A)H™ 2(8/\/1 E)NCp

(1+A)"2y"(A) € ¥DO(-1).

Symbol:
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we T AH Z(OM:E)NCp {X (Bu=u
Pepu =u
PN XT(A)u=u
(XT(A) = Pcp)u =0
— {x*(A)u =u
Lu =

Symbol:
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wexT(A)H 2(OM;E)NCp

L:=xT(A)—Pep—0o

/ 1
—1(£,8) = ail) (_O |6> :

Choose o € C2°(0, 1] such that /(1) # 0

(1+A)"2y"(A) € ¥DO(-1).

Symbol:
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we xT(A)H2(IM;E) N Cp

/(1)

L:=xT(A)—Pep—0o

/ 1
,1(£,£):& (_O 6)

(1+A)"2y"(A) € ¥DO(-1).

Symbol:

4

i

Choose a € C2°(0, 1] such that /(1) #0 = 0_1(L,¢&) invertible for £ # 0
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we xT(A)H2(IM;E) N Cp {P o
cpu =

u-u
PCD U—O
{ u-u

L= x*(A) = Pep — o 11

/ 1
,1(£,£):& (_O 6)

(1+A)"2y"(A) € ¥DO(-1).

Symbol:

4

i

Choose v € C2°(0, 1] such that o/(1) 20 = 0_1(L, &) invertible for { #0 —
ker £ < oo
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we xT(A)H2(IM;E) N Cp {P o
cpu =

u-u
PCD U—O
{ u-u

L= x*(A) = Pep — o 11

/ 1
,1(£,£):& (_O 6)

(1+A)"2y"(A) € ¥DO(-1).

Symbol:

4

i

Choose v € C2°(0, 1] such that o/(1) 20 = 0_1(L, &) invertible for { #0 —
ker £L < 00 <= dim (X+(A) 7%(3/\/1 £€) ﬂCD> < 0.
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